Answer to Question #320589 in Real Analysis for Vikram

Question #320589

Show that n=1 to ∞ ∑(-1)^n+1 5/7n+2 is conditionally convergent.

1
Expert's answer
2022-03-31T02:15:10-0400

n=1(1)n+157n+2    Leibnitz  series:altering  signs;57n+20,nHence  the  series  converges.The  series n=157n+2does  not  converge  by  the  comparison  test:limn57n+21n=limn57+2n=57and  n=11n  does  not  convergeHence  the  series  is  conditionally  convergent\sum_{n=1}^{\infty}{\left( -1 \right) ^{n+1}\frac{5}{7n+2}}\,\,-\,\,Leibnitz\,\,series:\\altering\,\,signs;\\\frac{5}{7n+2}\downarrow 0,n\rightarrow \infty \\Hence\,\,the\,\,series\,\,converges.\\The\,\,series\ \sum_{n=1}^{\infty}{\frac{5}{7n+2}}\\does\,\,not\,\,converge\,\,by\,\,the\,\,comparison\,\,test:\\\underset{n\rightarrow \infty}{\lim}\frac{\frac{5}{7n+2}}{\frac{1}{n}}=\underset{n\rightarrow \infty}{\lim}\frac{5}{7+\frac{2}{n}}=\frac{5}{7}\\and\,\,\sum_{n=1}^{\infty}{\frac{1}{n}}\,\,does\,\,not\,\,converge\\Hence\,\,the\,\,series\,\,is\,\,conditionally\,\,convergent


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment