If f and g are continuous functions on [a,b] with integral from a to x f ≥ integral from a to x g for every x ∈ [a, b], must it be true that f(x) ≥ g(x) on [a, b]?
[a,b]=[0,1]f(x)=1−x,g(x)=x∫axf(t)dt=∫0x(1−t)dt=x−x22∫axg(t)dt=∫0xtdt=x22x∈[0,1]⇒x⩾x2⇒x−x22⩾x22⇒∫axf(t)dt⩾∫axg(t)dtf(34)=14<34=g(34)The statement is false.\left[ a,b \right] =\left[ 0,1 \right] \\f\left( x \right) =1-x,g\left( x \right) =x\\\int_a^x{f\left( t \right) dt}=\int_0^x{\left( 1-t \right) dt}=x-\frac{x^2}{2}\\\int_a^x{g\left( t \right) dt}=\int_0^x{tdt}=\frac{x^2}{2}\\x\in \left[ 0,1 \right] \Rightarrow x\geqslant x^2\Rightarrow x-\frac{x^2}{2}\geqslant \frac{x^2}{2}\Rightarrow \int_a^x{f\left( t \right) dt}\geqslant \int_a^x{g\left( t \right) dt}\\f\left( \frac{3}{4} \right) =\frac{1}{4}<\frac{3}{4}=g\left( \frac{3}{4} \right) \\The\,\,statement\,\,is\,\,false.[a,b]=[0,1]f(x)=1−x,g(x)=x∫axf(t)dt=∫0x(1−t)dt=x−2x2∫axg(t)dt=∫0xtdt=2x2x∈[0,1]⇒x⩾x2⇒x−2x2⩾2x2⇒∫axf(t)dt⩾∫axg(t)dtf(43)=41<43=g(43)Thestatementisfalse.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments