Question #320263

Using the definition, show' that the sequence [1/√n]neN is Cauchy.

1
Expert's answer
2022-03-30T11:30:01-0400

ANSWER.

By the definition, a sequence {an}\left \{a _{n} \right \} is called a Cauchy sequence if for any given ε>0\varepsilon>0 there exists nεNn_{\varepsilon}\in N such that

n,m>nεanam<εn,m>n_{\varepsilon }\Rightarrow\left | a_{n} -a_{m}\right |<\varepsilon .

Note, that if mnm \neq n , then m>nm>n (or vice versa). Let m>nm>n , then m=n+(mn)m=n+(m-n) Denoting p=mnp=m-n, we get the equivalent definition: {an}\left \{a _{n} \right \} is called a Cauchy

sequence if for any given ε>0\varepsilon>0 there exists nεNn_{\varepsilon}\in N such that

anan+p<ε\left | a_{n} -a_{n+p}\right |<\varepsilon for all n>nεn >n_{\varepsilon } and pNp\in N .

Since n+p>n\sqrt{n+p}>\sqrt{n} for all n,pNn,p\in N ,then

anan+p=1n1n+p<1n\left | a_{n}-a_{n+p} \right |=\frac{1}{\sqrt{n }}- \frac{1}{\sqrt{n+p}}<\frac{1}{\sqrt{n }} .

So, if ε>0\varepsilon>0 and nε=n_{\varepsilon}=[(1ε)2]\left [ \left ( \frac{1}{\varepsilon} \right )^{2} \right ] (integer part of (1ε)2\left ( \frac{1}{\varepsilon} \right )^{2} ) , then

n>nε>(1ε)2n>nε>(1ε)0<1n<εn>n_{\varepsilon}>\left ( \frac{1}{\varepsilon} \right )^{2} \Rightarrow \sqrt{n}>\sqrt{n_{\varepsilon}} >\left ( \frac{1}{\varepsilon} \right ) \Rightarrow0< \frac{1}{\sqrt{n}}<\varepsilon ,

Hense , 0<1n1n+p<ε0<\frac{1}{\sqrt{n }}- \frac{1}{\sqrt{n+p}}<\varepsilon (n>nε,p1)(n>n_{\varepsilon}, p\geq1) .

Therefore , the sequence an=1na_{n}=\frac{1}{\sqrt{n}} is Cauchy sequence


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS