Question #319724

Apply second substitution theorem evaluate


Integral 1 to 4 dt/(|t+4|√t)

1
Expert's answer
2022-03-29T12:04:22-0400

I=14dtt+4tI=\int_1^4\frac {dt}{|t+4|\sqrt t}

Substitution:

u=tu=\sqrt t ; du=12dttdu=\frac12\frac{dt}{\sqrt t};

u1=1=1u_1=\sqrt 1=1 ; u2=4=2u_2=\sqrt 4=2 ;

I=14dtt+4t=214dt2t+4t=212duu2+4=I=\int_1^4\frac {dt}{|t+4|\sqrt t}=2\int_1^4\frac {dt}{2|t+4|\sqrt t}=2\int_1^2\frac {du}{|u^2+4|}=212duu2+42\int_1^2\frac {du}{u^2+4}

Second substitution:

v=u2v=\frac{u}{2}; dv=du2dv=\frac{du}{2};

v1=12v_1=\frac12; v2=1v_2=1;

I=4121dv4v2+4=121dvv2+1=arctanv121=I=4\int_{\frac12}^1\frac{dv}{4v^2+4}=\int_{\frac12}^1\frac{dv}{v^2+1}=\arctan{v}|_\frac12^1=arctan1arctan12=π4arctan120.32\arctan{1}-\arctan{\frac12}=\frac{\pi}{4}-\arctan{\frac12} \approx0.32


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS