I=∫14∣t+4∣tdt
Substitution:
u=t ; du=21tdt;
u1=1=1 ; u2=4=2 ;
I=∫14∣t+4∣tdt=2∫142∣t+4∣tdt=2∫12∣u2+4∣du=2∫12u2+4du
Second substitution:
v=2u; dv=2du;
v1=21; v2=1;
I=4∫2114v2+4dv=∫211v2+1dv=arctanv∣211=arctan1−arctan21=4π−arctan21≈0.32
Comments