ANSWER
Denote fn(x)=n3xn. If x∈[−31,31] , then
∣fn(x)∣≤3nn3 .
Let an=3nn3 .
anan+1=3n+1⋅n3(n+1)3⋅3n=31⋅(1+n1)3 .
limn→∞31⋅(1+n1)3= 31⋅ limn→∞ (1+n1)3= 31⋅(limn→∞(1+n1))3=31<1
Because \lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_{n}}=\frac{1}{3}<1\ , then the series ∑n=1∞an converges (by the Ratio Test).
Thus, using the Weierstrass M-Test , we make sure that the series ∑n=1∞n3xn converges uniformly on [−31,31]
Comments