Question #320287

Using weiestrass M-test, show that the following series converges uniformly.



∑n^3X^n,X belongs to[-1/3,1/3]


n=1

1
Expert's answer
2022-03-30T12:51:03-0400

ANSWER

Denote fn(x)=n3xn.f_{n}(x) =n^{3}x^{n}. If  x[13,13]\ x\in\left [ -\frac{1}{3} ,\frac{1}{3}\right ] , then

fn(x)n33n\left |f _{n}(x) \right |\leq\frac{n^{3}}{3^{n}} .

Let an=n33na_{n}=\frac{n^{3}} {3^{n}} .

an+1an=(n+1)33n3n+1n3=13(1+1n)3\frac{a_{n+1}}{a_{n}}=\frac{(n+1) ^{3}\cdot3^{n}}{3^{n+1}\cdot n^{3}}= \frac{1}{3}\cdot \left ( 1+\frac{1}{n} \right )^{3} .

limn13(1+1n)3=\lim _{n\rightarrow\infty}\frac{1}{3}\cdot \left ( 1+\frac{1}{n} \right )^{3}= 13\frac{1}{3}\cdot limn (1+1n)3=\lim _{n\rightarrow\infty}\ \left ( 1+\frac{1}{n} \right )^{3}= 13(limn(1+1n))3=13<1\frac{1}{3 }\cdot \left ( \lim_{n\rightarrow\infty}\left ( 1+\frac{1}{n} \right ) \right )^{3}=\frac{1}{3}<1

Because   \lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_{n}}=\frac{1}{3}<1\ , then the series n=1an\sum_{n=1}^{\infty}a_{n} converges (by the Ratio Test).

Thus, using the Weierstrass M-Test , we make sure that the series n=1n3xn\sum_{n=1}^{\infty}n^{3}x^{n} converges uniformly on [13,13]\left [ -\frac{1}{3} ,\frac{1}{3}\right ]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS