Question #110432
Find the inverse of the matrix
1 −1 4
2 9 8
6 5 2
using LU decomposition method.
1
Expert's answer
2020-04-20T16:48:54-0400

The LU decomposition A=LUA = L U of the given matrix is:

(114298652)=(100210611)(11401100022)\begin{pmatrix} 1 & -1 & 4 \\ 2 & 9 & 8 \\ 6 & 5 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0\\ 2 & 1 & 0\\ 6 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 4\\ 0 & 11 & 0\\ 0 & 0 & -22 \end{pmatrix}

Hence, the inverse of the matrix is A=U1L1A = U^{-1} L^{-1}.

Since U and L are already in upper and lower triangular form, it is easy to find their inverses using Gauss-Jordan elimination.

Inverse of L:

(100100210010611001)(R2R22R1;R3R36R1)\left(\begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 0 & 0\\ 2 & 1 & 0 & 0 & 1 & 0\\ 6 & 1 & 1 & 0 & 0 & 1 \end{array}\right) \sim (R_2 \rightarrow R_2- 2 R_1; R_3 \rightarrow R_3- 6 R_1) \sim

(100100010210011601)(R3R3R2)(100100010210001411)\left(\begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 0 & 0\\ 0 & 1 & 0 & -2 & 1 & 0\\ 0 & 1 & 1 & -6 & 0 & 1 \end{array}\right) \sim(R_3 \rightarrow R_3 - R_2) \sim \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 0 & 0\\ 0 & 1 & 0 & -2 & 1 & 0\\ 0 & 0 & 1 & -4 & -1 & 1 \end{array}\right)

Inverse of U:

(11410001100100122001)(R2R211;R3R322)(1141000100111000100122)(R1R1+R24R3)(10011112110100111000100122)\left(\begin{array}{ccc|ccc} 1 & -1 & 4 & 1 & 0 & 0\\ 0 & 11 & 0 & 0 & 1 & 0\\ 0 & 1 & -22 & 0 & 0 & 1 \end{array}\right) \sim (R_2 \rightarrow \frac{R_2}{11}; R_3 \rightarrow \frac{R_3}{22}) \sim \left(\begin{array}{ccc|ccc} 1 & -1 & 4 & 1 & 0 & 0\\ 0 & 1 & 0 & 0 & \frac{1}{11} & 0\\ 0 & 0 & 1 & 0 & 0 & -\frac{1}{22} \end{array}\right) \sim (R_1 \rightarrow R_1 + R_2 - 4R_3) \sim \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & \frac{1}{11} & \frac{2}{11}\\ 0 & 1 & 0 & 0 & \frac{1}{11} & 0\\ 0 & 0 & 1 & 0 & 0 & -\frac{1}{22} \end{array}\right)

Hence, A1=U1L1=(11112110111000122)(100210411)=(1111112112111110211122122)A^{-1} = U^{-1}L^{-1} = \begin{pmatrix} 1 & \frac{1}{11} & \frac{2}{11}\\ 0 & \frac{1}{11} & 0\\ 0 & 0 & -\frac{1}{22} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ -2 & 1 & 0\\ -4 & -1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{11} & -\frac{1}{11} & \frac{2}{11}\\ -\frac{2}{11} & \frac{1}{11} & 0 \\ \frac{2}{11} & \frac{1}{22} & -\frac{1}{22} \end{pmatrix}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS