ixf(x)01−314926103794108
i) Lagrange’s interpolation
f(x)=(1−4)(1−6)(1−7)(1−10)(x−4)(x−6)(x−7)(x−10)⋅(−3)++(4−1)(4−6)(4−7)(4−10)(x−1)(x−6)(x−7)(x−10)⋅9++(6−1)(6−4)(6−7)(6−10)(x−1)(x−4)(x−7)(x−10)⋅10++(7−1)(7−4)(7−6)(7−10)(x−1)(x−4)(x−6)(x−10)⋅9++(10−1)(10−4)(10−6)(10−7)(x−1)(x−4)(x−6)(x−7)⋅8
f(5)=(−270)(5−4)(5−6)(5−7)(5−10)++(−12)(5−1)(5−6)(5−7)(5−10)++(4)(5−1)(5−4)(5−7)(5−10)++(−6)(5−1)(5−4)(5−6)(5−10)++81(5−1)(5−4)(5−6)(5−7)==271+310+10−310+818=10.14
ii) Newton’s divided difference interpolation
146710−3910984−19+3=46−410−9=0.57−69−10=−110−78−9=−0.36−10.5−4=−0.71−7−1−0.5=0.254−10−0.3+1=−0.12
7−10.25+0.7=0.1610−4−0.12−0.25=−0.0610−1−0.06−0.16=−0.02
Resulting coefficients are:[-3,4,-0.7,0.16,-0.02]
Create Target Polynomials
f(x)=−3+4(x−1)−0.7(x−1)(x−4)++0.16(x−1)(x−4)(x−6)−−0.02(x−1)(x−4)(x−6)(x−7)f(5)=−3+4(5−1)−0.7(5−1)(5−4)++0.16(5−1)(5−4)(5−6)−−0.02(5−1)(5−4)(5−6)(5−7)=9.4
Comments