"\\begin{matrix}\ni&0&1&2&3&4\\\\\n x & 1&4&6&7&10 \\\\\n f(x)&-3&9&10&9&8\n\\end{matrix}"
i) Lagrange’s interpolation
"f(x)=\\frac{(x-4)(x-6)(x-7)(x-10)}{(1-4)(1-6)(1-7)(1-10)}\\cdot(-3)+\\\\\n+\\frac{(x-1)(x-6)(x-7)(x-10)}{(4-1)(4-6)(4-7)(4-10)}\\cdot9+\\\\\n+\\frac{(x-1)(x-4)(x-7)(x-10)}{(6-1)(6-4)(6-7)(6-10)}\\cdot10+\\\\\n+\\frac{(x-1)(x-4)(x-6)(x-10)}{(7-1)(7-4)(7-6)(7-10)}\\cdot9+\\\\\n+\\frac{(x-1)(x-4)(x-6)(x-7)}{(10-1)(10-4)(10-6)(10-7)}\\cdot8"
"f(5)=\\frac{(5-4)(5-6)(5-7)(5-10)}{(-270)}+\\\\\n+\\frac{(5-1)(5-6)(5-7)(5-10)}{(-12)}+\\\\\n+\\frac{(5-1)(5-4)(5-7)(5-10)}{(4)}+\\\\\n+\\frac{(5-1)(5-4)(5-6)(5-10)}{(-6)}+\\\\\n+\\frac{(5-1)(5-4)(5-6)(5-7)}{81}=\\\\\n=\\frac{1}{27}+\\frac{10}{3}+10-\\frac{10}{3}+\\frac{8}{81}=10.14"
ii) Newton’s divided difference interpolation
"\\begin{matrix}\n 1 & -3 \\\\\n&&\\frac{9+3}{4-1}=4\\\\\n 4 & 9&&\\frac{0.5-4}{6-1}=-0.7\\\\\n&&\\frac{10-9}{6-4}=0.5&&\\\\\n6&10&&\\frac{-1-0.5}{1-7}=0.25&&\\\\\n&&\\frac{9-10}{7-6}=-1&&\\\\\n7&9&&\\frac{-0.3+1}{4-10}=-0.12\\\\\n&&\\frac{8-9}{10-7}=-0.3\\\\\n10&8\n\\end{matrix}"
"\\begin{matrix}\n \\frac{0.25+0.7}{7-1}=0.16\\\\\n&&\\frac{-0.06-0.16}{10-1}=-0.02\\\\\n\\frac{-0.12-0.25}{10-4}=-0.06\\\\\n\\end{matrix}"
Resulting coefficients are:[-3,4,-0.7,0.16,-0.02]
Create Target Polynomials
"f(x)=-3+4(x-1)-0.7(x-1)(x-4)+\\\\+0.16(x-1)(x-4)(x-6)-\\\\\n-0.02(x-1)(x-4)(x-6)(x-7)\\\\\nf(5)=-3+4(5-1)-0.7(5-1)(5-4)+\\\\+0.16(5-1)(5-4)(5-6)-\\\\\n-0.02(5-1)(5-4)(5-6)(5-7)=9.4"
Comments
Leave a comment