ixf(x)β01β3β149β2610β379β4108β
i) Lagrangeβs interpolation
f(x)=(1β4)(1β6)(1β7)(1β10)(xβ4)(xβ6)(xβ7)(xβ10)ββ
(β3)++(4β1)(4β6)(4β7)(4β10)(xβ1)(xβ6)(xβ7)(xβ10)ββ
9++(6β1)(6β4)(6β7)(6β10)(xβ1)(xβ4)(xβ7)(xβ10)ββ
10++(7β1)(7β4)(7β6)(7β10)(xβ1)(xβ4)(xβ6)(xβ10)ββ
9++(10β1)(10β4)(10β6)(10β7)(xβ1)(xβ4)(xβ6)(xβ7)ββ
8
f(5)=(β270)(5β4)(5β6)(5β7)(5β10)β++(β12)(5β1)(5β6)(5β7)(5β10)β++(4)(5β1)(5β4)(5β7)(5β10)β++(β6)(5β1)(5β4)(5β6)(5β10)β++81(5β1)(5β4)(5β6)(5β7)β==271β+310β+10β310β+818β=10.14
ii) Newtonβs divided difference interpolation
146710ββ391098β4β19+3β=46β410β9β=0.57β69β10β=β110β78β9β=β0.3β6β10.5β4β=β0.71β7β1β0.5β=0.254β10β0.3+1β=β0.12βββ
7β10.25+0.7β=0.1610β4β0.12β0.25β=β0.06ββ10β1β0.06β0.16β=β0.02β
Resulting coefficients are:[-3,4,-0.7,0.16,-0.02]
Create Target Polynomials
f(x)=β3+4(xβ1)β0.7(xβ1)(xβ4)++0.16(xβ1)(xβ4)(xβ6)ββ0.02(xβ1)(xβ4)(xβ6)(xβ7)f(5)=β3+4(5β1)β0.7(5β1)(5β4)++0.16(5β1)(5β4)(5β6)ββ0.02(5β1)(5β4)(5β6)(5β7)=9.4
Comments