Question #108305
Find the minimum number of intervals required to evaluate int (e^(-x^2 +1))dx with an accuracy of 0.5 × 10^(-4) , by using Trapezoidal rule.
1
Expert's answer
2020-04-13T19:05:22-0400

To find the minimum number nn of intervals, we need to solve the inequality


E(ba)312n2[maxf"(x)],axb.E\leq\frac{(b-a)^3}{12n^2}[\text{max}|f"(x)|],a\leq x\leq b.

Therefore, first find the second derivative:


ddx[ex2+1]=2xe1x2=f(x), ddx[2xe1x2]=2e1x2(2x21)=f"(x).\frac{d}{dx}\big[e^{-x^2+1}\big]=-2xe^{1-x^2}=f'(x),\\ \space\\ \frac{d}{dx}\big[-2xe^{1-x^2}\big]=2e^{1-x^2}(2x^2-1)=f"(x).

Assume that the integration limits are a=1,b=2a=-1, b=2 because they are not present in the condition. Therefore:

f"(1)=2f"(2)=0.7f"(0)=5.43656...=max[f"(x)].f"(-1)=2\\ f"(2)=0.7\\ f"(0)=-5.43656...=\text{max}[f"(x)].\\

Find nn:


0.5104(2(1))312n2[5.27]=2712n25.4366, n2244647,n494.62496.0.5\cdot10^{-4}\leq\frac{(2-(-1))^3}{12n^2}[5.27]=\frac{27}{12n^2}\cdot5.4366, \\ \space\\ n^2\geq244647,\\n\geq494.62\approx496.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS