Find the fourth Taylor polynomial approximation of sin−1(x) at x=21
f(21)=4π
f′(x)=2⋅x−x21⟹f′(21)= 1
f′′(x)=41(2x−1)(x−x2)−23⟹f′′(21)=0
f(3)(x)=21(x−x2)−23+83(2x−1)2(x−x2)−25⟹f(3)(21)=4
f(4)(x)=43(x−x2)−25(2x−1)++83(4(2x−1)(x−x2)−25+25(2x−1)3(x−x2)−27)⟹f(4)(21)=0
The fourth degree Taylor polynomia:
sin−1(x)≈4π−(x−21)+32(x−21)3
close to x=21
Comments