Question #108303
Calculate the fourth degree Taylor polynomial about x0 = 0.5 for the function f(x) = sin^(-1) √x
1
Expert's answer
2020-04-13T10:59:19-0400

Find the fourth  Taylor polynomial approximation of sin1(x)\displaystyle{sin^{-1}\left(\sqrt{{x}}\right)} at x=12x=\frac{1}{2}

f(12)=π4f(\frac{1}{2})=\frac{\pi}{ 4}


f(x)=12xx2    f(12)=f'(x)=\frac{1}{ 2\cdot \sqrt{{x}-{{x}}^{2}}} \implies f'(\frac{1}{2})= 1


f(x)=14(2x1)(xx2)32    f(12)=0f''(x)=\frac{1}{ 4} (2x-1)(x-x^2)^{-\frac{3}{2}} \implies f''(\frac{1}{2})=0


f(3)(x)=12(xx2)32+38(2x1)2(xx2)52    f(3)(12)=4f^{(3)}(x)=\frac{1}{ 2} (x-x^2)^{-\frac{3}{2}} + \frac{3}{8} (2x-1)^2(x-x^2)^{-\frac{5}{2}} \implies f^{(3)}(\frac{1}{2})=4


f(4)(x)=34(xx2)52(2x1)++38(4(2x1)(xx2)52+52(2x1)3(xx2)72)    f(4)(12)=0f^{(4)}(x)=\frac{3}{ 4} (x-x^2)^{-\frac{5}{2}}(2x-1) + \\ + \frac{3}{8} (4(2x-1)(x-x^2)^{-\frac{5}{2}} +\frac{5}{2}(2x-1)^3 (x-x^2)^{-\frac{7}{2}}) \implies f^{(4)}(\frac{1}{2})=0


The fourth degree Taylor polynomia:

sin1(x)π4(x12)+23(x12)3\displaystyle{sin^{-1}\left(\sqrt{{x}}\right)} \approx \frac{\pi}{ 4}-(x-\frac{1}{2})+\frac{2}{3}(x-\frac{1}{2})^3

close to x=12x=\frac{1}{2}





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS