Question #110429
Find the inverse of the following matrix, using Gauss Jordan method.
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3
1
Expert's answer
2020-04-21T15:33:58-0400

A=[1234234134124123]A=\begin{bmatrix} 1 & 2&3&4 \\ 2&3&4&1\\ 3&4&1&2\\ 4&1&2&3 \end{bmatrix}

[AE]=[12341000234101003412001041230001][A|E]=\begin{bmatrix} 1 & 2&3&4 |1&0&0&0\\ 2&3&4&1|0&1&0&0\\ 3&4&1&2|0&0&1&0\\ 4&1&2&3|0&0&0&1 \end{bmatrix}

IIr+Ir(-2)

IIIr+Ir(-3)

IIIIr+Ir(-4)

[12341000012721000281030100710134001]\begin{bmatrix} 1 & 2&3&4 |1&0&0&0\\ 0&-1&-2&-7|-2&1&0&0\\ 0&-2&-8&-10|-3&0&1&0\\ 0&-7&-10&-13|-4&0&0&1 \end{bmatrix}

IIr(-1)

IIIr+IIr(-2)

IIIIr+IIr(-7)

[1234100001272100004412100043610701]\begin{bmatrix} 1 & 2&3&4 |1&0&0&0\\ 0&1&2&7|2&-1&0&0\\ 0&0&-4&4|1&-2&1&0\\ 0&0&4&36|10&-7&0&1 \end{bmatrix}

IIIr(14)\cdot(-\frac{1}{4})

IIIIr+IIIr

[123410000127210000110.250.50.2500004011911]\begin{bmatrix} 1 & 2&3&4 |1&0&0&0\\ 0&1&2&7|2&-1&0&0\\ 0&0&1&-1|-0.25&0.5&-0.25&0\\ 0&0&0&40|11&-9&1&1 \end{bmatrix}

IIIIr140\cdot\frac{1}{40}

IIIr+IIIIr

IIr+IIIr(-2)+IIIIr(-7)

Ir+IIr(-2)+IIIr(-3)+IIIIr(-4)

[10000.2250.0250.0250.27501000.0250.0250.2750.22500100.0250.2750.2250.02500010.2750.2250.0250.025]\begin{bmatrix} 1 & 0&0&0 |\\&&&&-0.225&0.025&0.025&0.275\\ 0&1&0&0|\\&&&&0.025&0.025&0.275&-0.225\\ 0&0&1&0|\\&&&&0.025&0.275&-0.225&0.025\\ 0&0&0&1|\\&&&&0.275&-0.225&0.025&0.025 \end{bmatrix}

A1==[0.2250.0250.0250.2750.0250.0250.2750.2250.0250.2750.2250.0250.2750.2250.0250.025]A^{-1}==\begin{bmatrix} -0.225&0.025&0.025&0.275\\ 0.025&0.025&0.275&-0.225\\ 0.025&0.275&-0.225&0.025\\ 0.275&-0.225&0.025&0.025 \end{bmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS