Question #241818

1. What is the 50th term of the fibonacci sequence?

2. Solve for the 67th term of the fibonacci sequence?

3. The 80th term of fibonacci sequence is

4. What is the 99th term of fibonacci sequence?

5. The 100th term of fibonacci sequence is


1
Expert's answer
2021-09-27T14:32:20-0400

Use Binet formula


Fn=αnβnαβF_n=\dfrac{\alpha^n-\beta^n}{\alpha-\beta}

α=1+52,β=152\alpha=\dfrac{1+\sqrt{5}}{2}, \beta=\dfrac{1-\sqrt{5}}{2}

αβ=5\alpha-\beta=\sqrt{5}

1.


F50=(1+5)50(15)502505F_{50}=\dfrac{(1+\sqrt{5})^{50}-(1-\sqrt{5})^{50}}{2^{50}\sqrt{5}}

F50=12586269025F_{50}= 12586269025

2.


F67=(1+5)67(15)672675F_{67}=\dfrac{(1+\sqrt{5})^{67}-(1-\sqrt{5})^{67}}{2^{67}\sqrt{5}}

F67=44945570212853F_{67}= 44945570212853

3.

F80=(1+5)80(15)802805F_{80}=\dfrac{(1+\sqrt{5})^{80}-(1-\sqrt{5})^{80}}{2^{80}\sqrt{5}}

F80=23416728348467685F_{80}= 23416728348467685

4.

F99=(1+5)99(15)992995F_{99}=\dfrac{(1+\sqrt{5})^{99}-(1-\sqrt{5})^{99}}{2^{99}\sqrt{5}}

F99=218922995834555169026F_{99}= 218922995834555169026

5.

F100=(1+5)100(15)10021005F_{100}=\dfrac{(1+\sqrt{5})^{100}-(1-\sqrt{5})^{100}}{2^{100}\sqrt{5}}

F100=354224848179261915075F_{100}= 354224848179261915075


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS