What is the 99th term of fibonacci sequence?
Use Binet formula
"\\alpha=\\dfrac{1+\\sqrt{5}}{2}, \\beta=\\dfrac{1-\\sqrt{5}}{2}"
"\\alpha-\\beta=\\sqrt{5}"
"F_{99}=\\dfrac{(1+\\sqrt{5})^{99}-(1-\\sqrt{5})^{99}}{2^{99}\\sqrt{5}}"
"F_{99}= 218922995834555169026"
Comments
Leave a comment