i)
(x−(−1))2+(y−5)2=(5)2
x2+2x+1+y2−10y+25=25
x2+y2+2x−10y+1=0 ii)
x2+y2+2x−10y+1=0 Differentiate both sides with respect to x and use the Chain Rule
2x+2yy′+2−10y′=0
y′=5−yx+1 Point A=(−4,9).
slope=m=y′(−4)=5−9−4+1=43The equation of the tangent to C at the point A=(−4,9) in point-slope form
y−9=43(x−(−4)) The equation of the tangent to C at the point A=(−4,9) in slope-intercept form
y=43x+12 iii) Point C(−1,5) is the middle of AB
−1=2−4+xB=>xB=2
5=29+yB=>yB=1 Point B(2,1).
(0−m)2+(0−n)2=r2(−4−m)2+(9−n)2=r2(2−m)2+(1−n)2=r2
m2+n2=r216+8m+81−18n=04−4m+1−2n=0
m2+n2=r2107−22n=0m=−21n+45
m=−1113,n=22107
r2=(−1113)2+(22107)2=48412125 The equation of the circle
(x+1113)2+(y−22107)2=48412125
Comments