a.      Express the roots of (−14+3i)−2/5 complex number in polar form.Â
"r=\\dfrac{1}{205}, \\theta=\\tan^{-1}(\\dfrac{84}{187})"
According to the De Moivre's Formula, all "n"-th roots of a complex number "r(\\cos \\theta+i\\sin \\theta)" are given by "\\sqrt[n]{r}\\bigg(\\cos (\\dfrac{\\theta+2\\pi k}{n})+i\\sin (\\dfrac{\\theta+2\\pi k}{n})\\bigg),"
"k=0, 1, 2, ... n-1"
"k=0:"
"k=1:"
"\\dfrac{1}{\\sqrt[5]{205}}(\\cos (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})+2\\pi}{5})+i\\sin (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})+2\\pi}{5}))""k=2:"
"\\dfrac{1}{\\sqrt[5]{205}}(\\cos (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})+4\\pi}{5})+i\\sin (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})+4\\pi}{5}))""k=3:"
"\\dfrac{1}{\\sqrt[5]{205}}(\\cos (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})+6\\pi}{5})+i\\sin (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})+6\\pi}{5}))""k=4:"
"\\dfrac{1}{\\sqrt[5]{205}}(\\cos (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})+8\\pi}{5})+i\\sin (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})+8\\pi}{5}))"
Comments
Leave a comment