(−14+3i)−2=42025187+4202584i
r=2051,θ=tan−1(18784) According to the De Moivre's Formula, all n-th roots of a complex number r(cosθ+isinθ) are given by nr(cos(nθ+2πk)+isin(nθ+2πk)),
k=0,1,2,...n−1
k=0:
52051(cos(5tan−1(18784))+isin(5tan−1(18784)))
k=1:
52051(cos(5tan−1(18784)+2π)+isin(5tan−1(18784)+2π))
k=2:
52051(cos(5tan−1(18784)+4π)+isin(5tan−1(18784)+4π))
k=3:
52051(cos(5tan−1(18784)+6π)+isin(5tan−1(18784)+6π))
k=4:
52051(cos(5tan−1(18784)+8π)+isin(5tan−1(18784)+8π))
Comments
Leave a comment