Answer to Question #168969 in Math for EUGINE HAWEZA

Question #168969

a.      Express the roots of (−14+3i)−2/5 complex number in polar form. 


1
Expert's answer
2021-03-08T19:17:18-0500
(14+3i)2=18742025+8442025i(-14+3i)^{-2}=\dfrac{187}{42025}+\dfrac{84}{42025}i

r=1205,θ=tan1(84187)r=\dfrac{1}{205}, \theta=\tan^{-1}(\dfrac{84}{187})

According to the De Moivre's Formula, all nn-th roots of a complex number r(cosθ+isinθ)r(\cos \theta+i\sin \theta) are given by rn(cos(θ+2πkn)+isin(θ+2πkn)),\sqrt[n]{r}\bigg(\cos (\dfrac{\theta+2\pi k}{n})+i\sin (\dfrac{\theta+2\pi k}{n})\bigg),

k=0,1,2,...n1k=0, 1, 2, ... n-1

k=0:k=0:


12055(cos(tan1(84187)5)+isin(tan1(84187)5))\dfrac{1}{\sqrt[5]{205}}(\cos (\dfrac{\tan^{-1}(\dfrac{84}{187})}{5})+i\sin (\dfrac{\tan^{-1}(\dfrac{84}{187})}{5}))

k=1:k=1:

12055(cos(tan1(84187)+2π5)+isin(tan1(84187)+2π5))\dfrac{1}{\sqrt[5]{205}}(\cos (\dfrac{\tan^{-1}(\dfrac{84}{187})+2\pi}{5})+i\sin (\dfrac{\tan^{-1}(\dfrac{84}{187})+2\pi}{5}))




k=2:k=2:

12055(cos(tan1(84187)+4π5)+isin(tan1(84187)+4π5))\dfrac{1}{\sqrt[5]{205}}(\cos (\dfrac{\tan^{-1}(\dfrac{84}{187})+4\pi}{5})+i\sin (\dfrac{\tan^{-1}(\dfrac{84}{187})+4\pi}{5}))



k=3:k=3:

12055(cos(tan1(84187)+6π5)+isin(tan1(84187)+6π5))\dfrac{1}{\sqrt[5]{205}}(\cos (\dfrac{\tan^{-1}(\dfrac{84}{187})+6\pi}{5})+i\sin (\dfrac{\tan^{-1}(\dfrac{84}{187})+6\pi}{5}))



k=4:k=4:

12055(cos(tan1(84187)+8π5)+isin(tan1(84187)+8π5))\dfrac{1}{\sqrt[5]{205}}(\cos (\dfrac{\tan^{-1}(\dfrac{84}{187})+8\pi}{5})+i\sin (\dfrac{\tan^{-1}(\dfrac{84}{187})+8\pi}{5}))





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment