( − 14 + 3 i ) − 2 = 187 42025 + 84 42025 i (-14+3i)^{-2}=\dfrac{187}{42025}+\dfrac{84}{42025}i ( − 14 + 3 i ) − 2 = 42025 187 + 42025 84 i
r = 1 205 , θ = tan − 1 ( 84 187 ) r=\dfrac{1}{205}, \theta=\tan^{-1}(\dfrac{84}{187}) r = 205 1 , θ = tan − 1 ( 187 84 ) According to the De Moivre's Formula, all n n n -th roots of a complex number r ( cos θ + i sin θ ) r(\cos \theta+i\sin \theta) r ( cos θ + i sin θ ) are given by r n ( cos ( θ + 2 π k n ) + i sin ( θ + 2 π k n ) ) , \sqrt[n]{r}\bigg(\cos (\dfrac{\theta+2\pi k}{n})+i\sin (\dfrac{\theta+2\pi k}{n})\bigg), n r ( cos ( n θ + 2 πk ) + i sin ( n θ + 2 πk ) ) ,
k = 0 , 1 , 2 , . . . n − 1 k=0, 1, 2, ... n-1 k = 0 , 1 , 2 , ... n − 1
k = 0 : k=0: k = 0 :
1 205 5 ( cos ( tan − 1 ( 84 187 ) 5 ) + i sin ( tan − 1 ( 84 187 ) 5 ) ) \dfrac{1}{\sqrt[5]{205}}(\cos (\dfrac{\tan^{-1}(\dfrac{84}{187})}{5})+i\sin (\dfrac{\tan^{-1}(\dfrac{84}{187})}{5})) 5 205 1 ( cos ( 5 tan − 1 ( 187 84 ) ) + i sin ( 5 tan − 1 ( 187 84 ) ))
k = 1 : k=1: k = 1 :
1 205 5 ( cos ( tan − 1 ( 84 187 ) + 2 π 5 ) + i sin ( tan − 1 ( 84 187 ) + 2 π 5 ) ) \dfrac{1}{\sqrt[5]{205}}(\cos (\dfrac{\tan^{-1}(\dfrac{84}{187})+2\pi}{5})+i\sin (\dfrac{\tan^{-1}(\dfrac{84}{187})+2\pi}{5})) 5 205 1 ( cos ( 5 tan − 1 ( 187 84 ) + 2 π ) + i sin ( 5 tan − 1 ( 187 84 ) + 2 π ))
k = 2 : k=2: k = 2 :
1 205 5 ( cos ( tan − 1 ( 84 187 ) + 4 π 5 ) + i sin ( tan − 1 ( 84 187 ) + 4 π 5 ) ) \dfrac{1}{\sqrt[5]{205}}(\cos (\dfrac{\tan^{-1}(\dfrac{84}{187})+4\pi}{5})+i\sin (\dfrac{\tan^{-1}(\dfrac{84}{187})+4\pi}{5})) 5 205 1 ( cos ( 5 tan − 1 ( 187 84 ) + 4 π ) + i sin ( 5 tan − 1 ( 187 84 ) + 4 π ))
k = 3 : k=3: k = 3 :
1 205 5 ( cos ( tan − 1 ( 84 187 ) + 6 π 5 ) + i sin ( tan − 1 ( 84 187 ) + 6 π 5 ) ) \dfrac{1}{\sqrt[5]{205}}(\cos (\dfrac{\tan^{-1}(\dfrac{84}{187})+6\pi}{5})+i\sin (\dfrac{\tan^{-1}(\dfrac{84}{187})+6\pi}{5})) 5 205 1 ( cos ( 5 tan − 1 ( 187 84 ) + 6 π ) + i sin ( 5 tan − 1 ( 187 84 ) + 6 π ))
k = 4 : k=4: k = 4 :
1 205 5 ( cos ( tan − 1 ( 84 187 ) + 8 π 5 ) + i sin ( tan − 1 ( 84 187 ) + 8 π 5 ) ) \dfrac{1}{\sqrt[5]{205}}(\cos (\dfrac{\tan^{-1}(\dfrac{84}{187})+8\pi}{5})+i\sin (\dfrac{\tan^{-1}(\dfrac{84}{187})+8\pi}{5})) 5 205 1 ( cos ( 5 tan − 1 ( 187 84 ) + 8 π ) + i sin ( 5 tan − 1 ( 187 84 ) + 8 π ))
Comments