Question #167780

4. The population of a certain village at one time was a perfect square. Later, with an increase of 100, the population was one more than a perfect square. Now, with an additional increase of 100, the population is again a perfect square. What was the original population? (Give all possible answers.)


1
Expert's answer
2021-03-02T05:12:00-0500

Let n2=n^2= original population count. Then


n2+100=a2+1n^2+100=a^2+1

n2+200=b2n^2+200=b^2

(an)(a+n)=99(a-n)(a+n)=99

(bn)(b+n)=200(b-n)(b+n)=200

99=1×99=3×33=9×1199=1\times99=3\times33=9\times 11

200=1×200=2×100=4×50=5×20200=1\times200=2\times100=4\times50=5\times20

=8×25=10×20=8×25=8\times25=10\times20=8\times25

an=1a+n=99=>n=49a=50\begin{matrix} a-n=1 \\ a+n=99 \end{matrix}=>\begin{matrix} n=49 \\ a=50 \end{matrix}

492=2401,49^2=2401,

492+100=2501=502+1,49^2+100=2501=50^2+1,

492+200=2601=51249^2+200=2601=51^2



an=9a+n=11=>n=15a=18\begin{matrix} a-n=9 \\ a+n=11 \end{matrix}=>\begin{matrix} n=15 \\ a=18 \end{matrix}

152=225,15^2=225,

152+100=325=182+1,15^2+100=325=18^2+1,

152+200=425,202=400,212=44115^2+200=425, 20^2=400, 21^2=441

Does not satisfy.



an=1a+n=99=>n=1a=10\begin{matrix} a-n=1 \\ a+n=99 \end{matrix}=>\begin{matrix} n=1 \\ a=10 \end{matrix}

12=1,1^2=1,

12+100=101=102+1,1^2+100=101=10^2+1,

12+200=201,142=196,152=2251^2+200=201, 14^2=196, 15^2=225

Does not satisfy.


The original population of a certain village was 2401 people.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS