Question #168199

If 10^x/2 + 10^-x/2 =4, prove that x = log(7 + 4√3)


1
Expert's answer
2021-03-09T07:50:21-0500

Let 10x=u,u>0.10^{x}=u, u>0. Then


u+u1=14u+u^{-1}=14

u214u+1=0u^2-14u+1=0

u=7±43u=7\pm4\sqrt{3}

43=48<74\sqrt{3}=\sqrt{48}<7


u1=743,u2=7+43u_1=7-4\sqrt{3},u_2=7+4\sqrt{3}


x1=log(743)x_1=\log{(7-4\sqrt{3})}


x2=log(7+43)x_2=\log{(7+4\sqrt{3})}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS