Question #237077

Use the simplex method to obtain the optimal solution of the following linear programming model

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 = 35𝑥1 + 50𝑥2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

3𝑥1 + 𝑥2 ≤ 30

𝑥1 + 2𝑥2 ≤ 15

4𝑥1 + 4𝑥2 ≤ 40 𝑥1,

𝑥2 ≥ 0


1
Expert's answer
2021-09-27T16:07:29-0400

Problem is

Max  Z=35x1+50x2Z=35x_1+50x_2 subject to:

3x1+x2303x_1+x_2≤30

x1+2x215x_1+2x_2≤15

4x1+4x2404x_1+4x_2≤40

and x1,x20x_1,x_2≥0 ;


The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate


1. As the constraint-1 is of type '≤' we should add slack variable S1S_1


2. As the constraint-2 is of type '≤' we should add slack variable S2S_2


3. As the constraint-3 is of type '≤' we should add slack variable S3S_3


After introducing slack variables

Max Z=35x1+50x2+0S1+0S2+0S3Max \ Z=35x_1+50x_2+0S_1+0S_2+0S_3

subject to:

3x1+x2+S1=30x1+2x2+S2=154x1+4x2+S3=403x_1+x_2+S_1=30\\ x_1+2x_2+S_2=15\\ 4x_1+4x_2+S_3=40\\

and x1,x2,S1,S2,S30x_1,x_2,S_1,S_2,S_3≥0



Negative minimum Zj-Cj is -50 and its column index is 2. So, the entering variable is x2x_2 .


Minimum ratio is 7.5 and its row index is 2. So, the leaving basis variable is S2S_2 .


∴ The pivot element is 2.


Entering =x2x_2 , Departing =S2S_2 , Key Element =2




Negative minimum Zj-Cj is -10 and its column index is 1. So, the entering variable is x1x_1 .


Minimum ratio is 5 and its row index is 3. So, the leaving basis variable is S3S_3 .


∴ The pivot element is 2.

Entering =x1x_1 , Departing =S3S_3 , Key Element =2




Since all Zj-Cj≥0


Hence, optimal solution is arrived with value of variables as :

x1x_1 =5,x2x_2 =5


Max Z=425


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS