Question #237073

Solve the following linear programming problem using the simplex method:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 = 14𝑥 + 15𝑦

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

13𝑥 + 15𝑦 ≤ 80

−12𝑥 − 17𝑦 ≥ −120

𝑥 ≥ 0, 𝑦 ≥ 0


1
Expert's answer
2021-09-28T02:21:40-0400

Replace xx by x1x_1 and yy by x2.x_2.

Problem is: MaxZ=14x1+15x2\operatorname{Max} Z=14 x_{1}+15 x_{2}

subject to:

13x1+15x28012x117x2120\begin{array}{rllll} & 13 & x_{1} & + & 15 & x_{2} & \leq 80 \\ - & 12 & x_{1} & - & 17 & x_{2} & \leq-120 \end{array}

Here, b2=120<0b_{2}=-120<0

so multiply this constraint by 1-1 to make b2>0.b_{2}>0 .

12x1+17x2120 and x1,x2012 x_{1}+17 \quad x_{2} \geq 120 \ and \ x_{1}, x_{2} \geq 0

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropriate:

1. As the constraint-1 is of type '≤' we should add slack variable S1S_1


2. As constraint-2 is of type '≥' we should subtract surplus variable S2S_2  and add artificial variable A1.A_1.


After introducing slack, surplus,artificial variables:


MaxZ=14x1+15x2+0S1+0S2MA1\operatorname{Max} Z=14 x_{1}+15 x_{2}+0 S_{1}+0 S_{2}-M A_{1}

subject to:

13x1+15x2+S1=8012x1+17x2S2+A1=120and x1,x2,S1,S2,A1013 x_{1}+15 x_{2}+S_{1} \quad=80 \\ 12 x_{1}+17 x_{2} \quad-S_{2}+A_{1}=120 \\ and \ x_{1}, x_{2}, S_{1}, S_{2}, A_{1} \geq 0




Negative minimum Zj-Cj is -17M-15 and its column index is 2. So, the entering variable is x2.


Minimum ratio is 5.3333 and its row index is 1. So, the leaving basis variable is S1.


∴ The pivot element is 15.


Entering =x2, Departing =S1, Key Element =15






Since all Zj-Cj≥0


Hence, the optimal solution arrives with value of variables as :

x1=0,x2=5.3333


Max Z=80


But this solution is not feasible

because the final solution violates the 2nd constraint  12 x1 + 17 x2 ≥ 120.


and the artificial variable A1 appears in the basis with a positive value of 29.3333


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS