Question #290594

Study whether the vectors v1(1, 1, 2), v2(2, 3, 0), v3(3, 4, 2) in R 3 are linearly dependent. If so, find the linear dependency relation


1
Expert's answer
2022-01-25T16:52:00-0500

A sequence of vectors v1,v2,...,vk\vec v_1, \vec v_2,..., \vec v_k  from a vector space VV is said to be linearly dependent, if there exist scalars a1,a2,...,aka_1, a_2, ..., a_k not all zero, such that


a1v1+a2v1+...+akvk=0a_1\vec v_1+a_2\vec v_1+...+a_k\vec v_k=\vec 0

where 0\vec 0 denotes the zero vector.

Consider the set of vectors v1=(1,1,2),v2=(2,3,0),v3=(3,4,2)\vec v_1=(1,1,2), \vec v_2=(2,3,0), \vec v_3=(3,4,2) then the condition for linear dependence seeks a set of non-zero scalars, such that


[123134202][a1a2a3]=[000]\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 4 \\ 2 & 0 & 2 \\ \end{bmatrix}\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}

Augmented matrix


[123 0134 0202 0]\begin{bmatrix} 1 & 2 & 3 & \ 0 \\ 1 & 3 & 4 & \ 0 \\ 2 & 0 & 2 & \ 0 \\ \end{bmatrix}

R2=R2R1R_2=R_2-R_1


[123 0011 0202 0]\begin{bmatrix} 1 & 2 & 3 & \ 0 \\ 0 & 1 & 1 & \ 0 \\ 2 & 0 & 2 & \ 0 \\ \end{bmatrix}

R3=R32R1R_3=R_3-2R_1


[123 0011 0044 0]\begin{bmatrix} 1 & 2 & 3 & \ 0 \\ 0 & 1 & 1 & \ 0 \\ 0 & -4 & -4 & \ 0 \\ \end{bmatrix}

R1=R12R2R_1=R_1-2R_2


[101 0011 0044 0]\begin{bmatrix} 1 & 0 & 1 & \ 0 \\ 0 & 1 & 1 & \ 0 \\ 0 & -4 & -4 & \ 0 \\ \end{bmatrix}

R3=R3+4R2R_3=R_3+4R_2


[101 0011 0000 0]\begin{bmatrix} 1 & 0 & 1 & \ 0 \\ 0 & 1 & 1 & \ 0 \\ 0 & 0 & 0 & \ 0 \\ \end{bmatrix}

If a3=c0,a_3=c\not=0, then a1=a2=c.a_1=a_2=-c.

Hence


v3=v1+v2\vec v_3=\vec v_1+\vec v_2

The vectors v1=(1,1,2),v2=(2,3,0),v3=(3,4,2)\vec v_1=(1,1,2), \vec v_2=(2,3,0), \vec v_3=(3,4,2) in R3R ^3 are linearly dependent, and


v3=v1+v2\vec v_3=\vec v_1+\vec v_2

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS