Study whether the vectors v1(1, 1, 2), v2(2, 3, 0), v3(3, 4, 2) in R 3 are linearly dependent. If so, find the linear dependency relation
1
Expert's answer
2022-01-25T16:52:00-0500
A sequence of vectors v1,v2,...,vk from a vector space V is said to be linearly dependent, if there exist scalars a1,a2,...,ak not all zero, such that
a1v1+a2v1+...+akvk=0
where 0 denotes the zero vector.
Consider the set of vectors v1=(1,1,2),v2=(2,3,0),v3=(3,4,2) then the condition for linear dependence seeks a set of non-zero scalars, such that
⎣⎡112230342⎦⎤⎣⎡a1a2a3⎦⎤=⎣⎡000⎦⎤
Augmented matrix
⎣⎡112230342000⎦⎤
R2=R2−R1
⎣⎡102210312000⎦⎤
R3=R3−2R1
⎣⎡10021−431−4000⎦⎤
R1=R1−2R2
⎣⎡10001−411−4000⎦⎤
R3=R3+4R2
⎣⎡100010110000⎦⎤
If a3=c=0, then a1=a2=−c.
Hence
v3=v1+v2
The vectors v1=(1,1,2),v2=(2,3,0),v3=(3,4,2) in R3 are linearly dependent, and
Comments