( X + 2 y + 3 z 4 y + 5 z 6 z ) \begin{pmatrix}
X+2y+3z \\
4y+5z\\
6z
\end{pmatrix} ⎝ ⎛ X + 2 y + 3 z 4 y + 5 z 6 z ⎠ ⎞ = x ( 1 0 0 ) + y ( 2 4 0 ) + z ( 3 5 6 ) =x\begin{pmatrix}
1\\
0\\
0
\end{pmatrix}+y\begin{pmatrix}
2\\
4 \\
0
\end{pmatrix}+z \begin{pmatrix}
3 \\
5 \\
6
\end{pmatrix} = x ⎝ ⎛ 1 0 0 ⎠ ⎞ + y ⎝ ⎛ 2 4 0 ⎠ ⎞ + z ⎝ ⎛ 3 5 6 ⎠ ⎞
Transforming matrix
A = ( 1 2 3 0 4 5 0 0 6 ) A=\begin{pmatrix}
1&2&3 \\
0&4&5\\
0&0&6
\end{pmatrix} A = ⎝ ⎛ 1 0 0 2 4 0 3 5 6 ⎠ ⎞
Characteristic equation of A is
∣ A − I λ ∣ = ∣ 1 − λ 2 3 0 4 − λ 5 0 0 6 − λ ∣ = 0 \>\>\begin{vmatrix}
A-I\lambda \\
\end{vmatrix}=\begin{vmatrix}
1-\lambda&&2&&3 \\
0&&4-\lambda&&5 \\
0&&0&&6-\lambda
\end{vmatrix}=0 ∣ ∣ A − I λ ∣ ∣ = ∣ ∣ 1 − λ 0 0 2 4 − λ 0 3 5 6 − λ ∣ ∣ = 0
Expanding
( 1 − λ ) [ ( 4 − λ ) ( 6 − λ ) − 0 ] + 2 ( 0 ) + 3 ( 0 ) = 0 (1-\lambda)[(4-\lambda)(6-\lambda)-0]+2(0)+3(0)=0 ( 1 − λ ) [( 4 − λ ) ( 6 − λ ) − 0 ] + 2 ( 0 ) + 3 ( 0 ) = 0
⟹ ( 1 − λ ) ( 4 − λ ) ( 6 − λ ) = 0 \implies(1-\lambda)(4-\lambda)(6-\lambda)=0 ⟹ ( 1 − λ ) ( 4 − λ ) ( 6 − λ ) = 0
The distincts roots of A are also roots of the minimum polynomial g ( x ) g(x) g ( x )
∴ g ( x ) = ( x − 1 ) ( x − 4 ) ( x − 6 ) \therefore\>g(x)=(x-1)(x-4)(x-6) ∴ g ( x ) = ( x − 1 ) ( x − 4 ) ( x − 6 )
Comments