Question #290370

Write v as a linear combination of u1, u2, u3, where

(a) v = (4, −9, 2), u1 = (1, 2, −1), u2 = (1, 4, 2), u3 = (1, −3, 2);

(b) v = (1, 3, 2), u1 = (1, 2, 1), u2 = (2, 6, 5), u3 = (1, 7, 8);

(c) v = (1, 4, 6), u1 = (1, 1, 2), u2 = (2, 3, 5), u3 = (3, 5, 8);


1
Expert's answer
2022-01-25T12:18:35-0500

(a) Writing  v~v as a linear combination of u1,u2,u_1, u_2, and u3u_3 means finding c1,c_1, c2,c_2, and c3c_3 such that v=c1u1+c2u2+c3u3.v=c_1u_1+c_2u_2+c_3u_3. This is equivalent to solving a system of linear equations


[111243122][c1c2c3]=[492]\begin{bmatrix} 1 & 1 & 1 \\ 2 & 4 & -3 \\ -1 & 2 & 2 \end{bmatrix}\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}=\begin{bmatrix} 4 \\ -9 \\ 2 \end{bmatrix}

Augmented matrix


A=[111  4243  9122  2]A=\begin{bmatrix} 1 & 1 & 1 &\ \ 4\\ 2 & 4 & -3 & \ \ -9 \\ -1 & 2 & 2 & \ \ 2 \end{bmatrix}

R2=R22R1R_2=R_2-2R_1


[111  4025  17122  2]\begin{bmatrix} 1 & 1 & 1 &\ \ 4\\ 0 & 2 & -5 & \ \ -17 \\ -1 & 2 & 2 & \ \ 2 \end{bmatrix}

R3=R3+R1R_3=R_3+R_1


[111  4025  17033  6]\begin{bmatrix} 1 & 1 & 1 &\ \ 4\\ 0 & 2 & -5 & \ \ -17 \\ 0 & 3 & 3 & \ \ 6 \end{bmatrix}

R2=R2/2R_2=R_2/2


[111  4015/2  17/2033  6]\begin{bmatrix} 1 & 1 & 1 &\ \ 4\\ 0 & 1 & -5/2 & \ \ -17/2 \\ 0 & 3 & 3 & \ \ 6 \end{bmatrix}

R1=R1R2R_1=R_1-R_2


[107/2  25/2015/2  17/2033  6]\begin{bmatrix} 1 & 0 & 7/2 &\ \ 25/2\\ 0 & 1 & -5/2 & \ \ -17/2 \\ 0 & 3 & 3 & \ \ 6 \end{bmatrix}

R3=R33R2R_3=R_3-3R_2


[107/2  25/2015/2  17/20021/2  63/2]\begin{bmatrix} 1 & 0 & 7/2 &\ \ 25/2\\ 0 & 1 & -5/2 & \ \ -17/2 \\ 0 & 0 & 21/2 & \ \ 63/2 \end{bmatrix}

R3=2R3/21R_3=2R_3/21


[107/2  25/2015/2  17/2001  3]\begin{bmatrix} 1 & 0 & 7/2 &\ \ 25/2\\ 0 & 1 & -5/2 & \ \ -17/2 \\ 0 & 0 & 1 & \ \ 3 \end{bmatrix}

R1=R17R3/2R_1=R_1-7R_3/2


[100  2015/2  17/2001  3]\begin{bmatrix} 1 & 0 & 0 &\ \ 2\\ 0 & 1 & -5/2 & \ \ -17/2 \\ 0 & 0 & 1 & \ \ 3 \end{bmatrix}

R2=R2+5R3/2R_2=R_2+5R_3/2


[100  2010  1001  3]\begin{bmatrix} 1 & 0 & 0 &\ \ 2\\ 0 & 1 & 0 & \ \ -1 \\ 0 & 0 & 1 & \ \ 3 \end{bmatrix}

So c1=2,c2=1,c3=3,c_1 = 2, c_2 = -1, c_3 = 3, and we can check that we can write


v=2u1u2+3u3v=2u_1-u_2+3u_3

=2[121][142]+3[132]=[492]=2\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}-\begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}+3\begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}=\begin{bmatrix} 4 \\ -9 \\ 2 \end{bmatrix}

(b) Writing  v~v as a linear combination of u1,u2,u_1, u_2, and u3u_3 means finding c1,c_1, c2,c_2, and c3c_3 such that v=c1u1+c2u2+c3u3.v=c_1u_1+c_2u_2+c_3u_3. This is equivalent to solving a system of linear equations


[121267158][c1c2c3]=[132]\begin{bmatrix} 1 & 2 & 1 \\ 2 & 6& 7 \\ 1 & 5 & 8 \end{bmatrix}\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}=\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}

Augmented matrix


A=[121  1267  3158  2]A=\begin{bmatrix} 1 & 2 & 1 &\ \ 1\\ 2 & 6 & 7 & \ \ 3 \\ 1 & 5 & 8 & \ \ 2 \end{bmatrix}

R2=R22R1R_2=R_2-2R_1


[121  1025  1158  2]\begin{bmatrix} 1 & 2 & 1 &\ \ 1\\ 0 & 2 & 5 & \ \ 1 \\ 1 & 5 & 8 & \ \ 2 \end{bmatrix}

R3=R3R1R_3=R_3-R_1


[121  1025  1037  1]\begin{bmatrix} 1 & 2 & 1 &\ \ 1\\ 0 & 2 & 5 & \ \ 1 \\ 0 & 3 & 7 & \ \ 1 \end{bmatrix}

R2=R2/2R_2=R_2/2


[121  1015/2  1/2037  1]\begin{bmatrix} 1 & 2 & 1 &\ \ 1\\ 0 & 1 & 5/2 & \ \ 1/2 \\ 0 & 3 & 7 & \ \ 1 \end{bmatrix}

R1=R12R2R_1=R_1-2R_2


[104  0015/2  1/2037  1]\begin{bmatrix} 1 & 0 & -4 &\ \ 0\\ 0 & 1 & 5/2 & \ \ 1/2 \\ 0 & 3 & 7 & \ \ 1 \end{bmatrix}

R3=R33R2R_3=R_3-3R_2


[104  0015/2  1/2001/2  1/2]\begin{bmatrix} 1 & 0 & -4 &\ \ 0\\ 0 & 1 & 5/2 & \ \ 1/2 \\ 0 & 0 & -1/2 & \ \ -1/2 \end{bmatrix}

R3=2R3R_3=-2R_3


[104  0015/2  1/2001  1]\begin{bmatrix} 1 & 0 & -4 &\ \ 0\\ 0 & 1 & 5/2 & \ \ 1/2 \\ 0 & 0 & 1 & \ \ 1 \end{bmatrix}

R1=R1+4R3R_1=R_1+4R_3


[100  4015/2  1/2001  1]\begin{bmatrix} 1 & 0 & 0 &\ \ 4\\ 0 & 1 & 5/2 & \ \ 1/2 \\ 0 & 0 & 1 & \ \ 1 \end{bmatrix}

R2=R25R3/2R_2=R_2-5R_3/2


[100  4010  2001  1]\begin{bmatrix} 1 & 0 & 0 &\ \ 4\\ 0 & 1 & 0& \ \ -2 \\ 0 & 0 & 1 & \ \ 1 \end{bmatrix}

So c1=4,c2=2,c3=1,c_1 = 4, c_2 = -2, c_3 = 1, and we can check that we can write


v=4u12u2+u3v=4u_1-2u_2+u_3



=4[121]2[265]+[178]=[132]=4\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}-2\begin{bmatrix} 2 \\ 6\\ 5 \end{bmatrix}+\begin{bmatrix} 1 \\ 7 \\ 8 \end{bmatrix}=\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}

(c) Writing  v~v as a linear combination of u1,u2,u_1, u_2, and u3u_3 means finding c1,c_1, c2,c_2, and c3c_3 such that v=c1u1+c2u2+c3u3.v=c_1u_1+c_2u_2+c_3u_3. This is equivalent to solving a system of linear equations


[123135258][c1c2c3]=[146]\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 2 & 5 & 8 \end{bmatrix}\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}=\begin{bmatrix} 1 \\ 4 \\ 6 \end{bmatrix}

Augmented matrix


A=[123  1135  4258  6]A=\begin{bmatrix} 1 & 2 & 3 &\ \ 1\\ 1 & 3 & 5 & \ \ 4 \\ 2 & 5 & 8 & \ \ 6 \end{bmatrix}

R2=R2R1R_2=R_2-R_1

[123  1012  3258  6]\begin{bmatrix} 1 & 2 & 3 &\ \ 1\\ 0 & 1 & 2 & \ \ 3 \\ 2 & 5 & 8 & \ \ 6 \end{bmatrix}

R3=R32R1R_3=R_3-2R_1

[123  1012  3012  4]\begin{bmatrix} 1 & 2 & 3 &\ \ 1\\ 0 & 1 & 2 & \ \ 3 \\ 0 & 1 & 2 & \ \ 4 \end{bmatrix}

R1=R12R2R_1=R_1-2R_2

[101  5012  3012  4]\begin{bmatrix} 1 & 0 & -1 &\ \ -5\\ 0 & 1 & 2 & \ \ 3 \\ 0 & 1 & 2 & \ \ 4 \end{bmatrix}

R3=R3R2R_3=R_3-R_2

[101  5012  3000  1]\begin{bmatrix} 1 & 0 & -1 &\ \ -5\\ 0 & 1 & 2 & \ \ 3 \\ 0 & 0 & 0 & \ \ 1 \end{bmatrix}

R1=R1+5R3R_1=R_1+5R_3

[101  0012  3000  1]\begin{bmatrix} 1 & 0 & -1 &\ \ 0\\ 0 & 1 & 2 & \ \ 3 \\ 0 & 0 & 0 & \ \ 1 \end{bmatrix}

Then the system has no solution.

Therefore we cannot write vv as a linear combination of u1,u2,u3.u_1, u_2, u_3.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS