Answer to Question #288348 in Linear Algebra for Sabelo Xulu

Question #288348

Q13.

Suppose T, S : R^2 \to R^2 are linear defined by T (u, v) = (3u + v, u + 2v) and S (x, y) = (2x - y, x + y).

Also the matrices of T and S with respect to the standard bases of R^2 and R^2 are given as M (T) =[3112]\begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}

and M (S) =[2111]\begin{bmatrix} 2 & - 1 \\ 1 & 1 \end{bmatrix}. Then M(T S) =

(1) [1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

(2) [3115]\begin{bmatrix} 3 & 1 \\ 1 & 5 \end{bmatrix}

(3) [3141]\begin{bmatrix} 3 & 1 \\ 4 & 1 \end{bmatrix}

4) None of the given answers is true


1
Expert's answer
2022-01-19T18:03:14-0500

M (T S) =[3112]\begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}[2111]\begin{bmatrix} 2 & - 1 \\ 1 & 1 \end{bmatrix}=[7241]\begin{bmatrix} 7 & - 2 \\ 4 & 1 \end{bmatrix}

Answer is (4) None of the given answers is true.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment