Augmenting A with a 3 × 3 3×3 3 × 3 identity matrix
= ( 2 1 2 ∣ 1 0 0 1 3 0 ∣ 0 1 0 − 1 1 2 ∣ 0 0 1 ) =\begin{pmatrix}
2 & 1&2| &1&0&0\\
1&3&0| & 0&1&0\\
-1&1&2|&0&0&1
\end{pmatrix} = ⎝ ⎛ 2 1 − 1 1 3 1 2∣ 0∣ 2∣ 1 0 0 0 1 0 0 0 1 ⎠ ⎞
1 2 R 1 → R 1 \frac{1}{2}R_1\to\>R_1 2 1 R 1 → R 1
− R 3 → R 3 -R_3\to\>R_3 − R 3 → R 3
( 1 1 2 1 ∣ 1 2 0 0 1 3 0 ∣ 0 1 0 1 − 1 − 2 ∣ 0 0 − 1 ) \begin{pmatrix}
1&\frac{1}{2}&1&|& \frac{1}{2}&0&0 \\
1&3&0&|& 0&1&0\\
1&-1&-2&|&0&0&-1
\end{pmatrix} ⎝ ⎛ 1 1 1 2 1 3 − 1 1 0 − 2 ∣ ∣ ∣ 2 1 0 0 0 1 0 0 0 − 1 ⎠ ⎞
R 2 − R 1 → R 2 R_2-R_1\to\>R_2 R 2 − R 1 → R 2
R 3 − R 1 → R 3 R_3-R_1\to\>R_3 R 3 − R 1 → R 3
( 1 1 2 1 ∣ 1 2 0 0 0 5 2 − 1 ∣ − 1 2 1 0 0 − 3 2 − 3 ∣ − 1 2 0 − 1 ) \begin{pmatrix}
1&\frac{1}{2}&1&|&\frac{1}{2}&0&0 \\
0&\frac{5}{2}&-1&|&\frac{-1}{2}&1&0 \\
0&\frac{-3}{2}&-3&|&\frac{-1}{2}&0&-1
\end{pmatrix} ⎝ ⎛ 1 0 0 2 1 2 5 2 − 3 1 − 1 − 3 ∣ ∣ ∣ 2 1 2 − 1 2 − 1 0 1 0 0 0 − 1 ⎠ ⎞
2 5 R 2 → R 2 \frac{2}{5}R_2\to\>R_2 5 2 R 2 → R 2
− 2 3 R 3 → R 3 \frac{-2}{3}R_3\to\>R_3 3 − 2 R 3 → R 3
( 1 1 2 1 ∣ 1 2 0 0 0 1 − 2 5 ∣ − 1 5 2 5 0 0 1 2 ∣ 1 3 0 2 3 ) \begin{pmatrix}
1&\frac{1}{2}&1&|&\frac{1}{2}&0&0 \\
0&1&\frac{-2}{5}&|&\frac{-1}{5}&\frac{2}{5}&0 \\
0&1&2&|&\frac{1}{3}&0&\frac{2}{3}
\end{pmatrix} ⎝ ⎛ 1 0 0 2 1 1 1 1 5 − 2 2 ∣ ∣ ∣ 2 1 5 − 1 3 1 0 5 2 0 0 0 3 2 ⎠ ⎞
5 12 ( R 3 − R 2 ) → R 3 \frac{5}{12}(R_3-R_2)\to\>R_3 12 5 ( R 3 − R 2 ) → R 3
R 2 + 2 5 R 3 → R 2 R_2+\frac{2}{5}R_3\to\>R_2 R 2 + 5 2 R 3 → R 2
( 1 1 2 1 ∣ 1 2 0 0 0 1 0 ∣ − 1 9 1 3 1 9 0 0 1 ∣ 2 9 − 1 6 5 18 ) \begin{pmatrix}
1&\frac{1}{2}&1&|&\frac{1}{2}&0&0\\
0&1&0&|&\frac{-1}{9} & \frac{1}{3}&\frac{1}{9}\\
0&0&1&|&\frac{2}{9}&\frac{-1}{6}&\frac{5}{18}
\end{pmatrix} ⎝ ⎛ 1 0 0 2 1 1 0 1 0 1 ∣ ∣ ∣ 2 1 9 − 1 9 2 0 3 1 6 − 1 0 9 1 18 5 ⎠ ⎞
R 1 − R 3 → R 3 R_1-R_3\to\>R_3 R 1 − R 3 → R 3
( 1 1 2 0 ∣ 5 18 1 6 − 5 18 0 1 0 ∣ − 1 9 1 3 1 9 0 0 1 ∣ 2 9 − 1 6 5 18 ) \begin{pmatrix}
1&\frac{1}{2}&0&|&\frac{5}{18}&\frac{1}{6}&\frac{-5}{18} \\
0&1&0&|&\frac{-1}{9} & \frac{1}{3}&\frac{1}{9}\\
0&0&1&|&\frac{2}{9}&\frac{-1}{6}&\frac{5}{18}
\end{pmatrix} ⎝ ⎛ 1 0 0 2 1 1 0 0 0 1 ∣ ∣ ∣ 18 5 9 − 1 9 2 6 1 3 1 6 − 1 18 − 5 9 1 18 5 ⎠ ⎞
R 1 − 1 2 R 2 → R 1 R_1-\frac{1}{2}R_2\to\>R_1 R 1 − 2 1 R 2 → R 1
= ( 1 0 0 ∣ 1 3 0 − 1 3 0 1 0 ∣ − 1 9 1 3 1 9 0 0 1 ∣ 2 9 − 1 6 5 18 ) =\begin{pmatrix}
1&0&0| & \frac{1}{3}&0&\frac{-1}{3}\\
0&1&0| & \frac{-1}{9}&\frac{1}{3}&\frac{1}{9}\\
0&0&1|&\frac{2}{9}&\frac{-1}{6}&\frac{5}{18}
\end{pmatrix} = ⎝ ⎛ 1 0 0 0 1 0 0∣ 0∣ 1∣ 3 1 9 − 1 9 2 0 3 1 6 − 1 3 − 1 9 1 18 5 ⎠ ⎞
Inverse is matrix on the right of augmented matrix
∴ A − 1 = ( 1 3 0 − 1 3 − 1 9 1 3 1 9 2 9 − 1 6 5 18 ) \therefore\>A^{-1}=\begin{pmatrix}
\frac{1}{3}& 0&\frac{-1}{3} \\
\frac{-1}{9}&\frac{1}{3} & \frac{1}{9}\\
\frac{2}{9}&\frac{-1}{6}&\frac{5}{18}
\end{pmatrix} ∴ A − 1 = ⎝ ⎛ 3 1 9 − 1 9 2 0 3 1 6 − 1 3 − 1 9 1 18 5 ⎠ ⎞
Rank is number of non-zeros row on the left of the augmented matrix
∴ \therefore ∴ Rank = 3 =3 = 3
Comments