Answer to Question #289136 in Linear Algebra for rakesh kumar

Question #289136

find the inverse of the following matrix A and rank of a 2. 1. 2

1. 3. 0

-1. 1. 2


1
Expert's answer
2022-01-30T15:16:09-0500

Augmenting A with a 3×33×3 identity matrix


=(212100130010112001)=\begin{pmatrix} 2 & 1&2| &1&0&0\\ 1&3&0| & 0&1&0\\ -1&1&2|&0&0&1 \end{pmatrix}


12R1R1\frac{1}{2}R_1\to\>R_1

R3R3-R_3\to\>R_3


(11211200130010112001)\begin{pmatrix} 1&\frac{1}{2}&1&|& \frac{1}{2}&0&0 \\ 1&3&0&|& 0&1&0\\ 1&-1&-2&|&0&0&-1 \end{pmatrix}


R2R1R2R_2-R_1\to\>R_2

R3R1R3R_3-R_1\to\>R_3



(112112000521121003231201)\begin{pmatrix} 1&\frac{1}{2}&1&|&\frac{1}{2}&0&0 \\ 0&\frac{5}{2}&-1&|&\frac{-1}{2}&1&0 \\ 0&\frac{-3}{2}&-3&|&\frac{-1}{2}&0&-1 \end{pmatrix}


25R2R2\frac{2}{5}R_2\to\>R_2

23R3R3\frac{-2}{3}R_3\to\>R_3



(1121120001251525001213023)\begin{pmatrix} 1&\frac{1}{2}&1&|&\frac{1}{2}&0&0 \\ 0&1&\frac{-2}{5}&|&\frac{-1}{5}&\frac{2}{5}&0 \\ 0&1&2&|&\frac{1}{3}&0&\frac{2}{3} \end{pmatrix}


512(R3R2)R3\frac{5}{12}(R_3-R_2)\to\>R_3

R2+25R3R2R_2+\frac{2}{5}R_3\to\>R_2


(112112000101913190012916518)\begin{pmatrix} 1&\frac{1}{2}&1&|&\frac{1}{2}&0&0\\ 0&1&0&|&\frac{-1}{9} & \frac{1}{3}&\frac{1}{9}\\ 0&0&1&|&\frac{2}{9}&\frac{-1}{6}&\frac{5}{18} \end{pmatrix}



R1R3R3R_1-R_3\to\>R_3


(1120518165180101913190012916518)\begin{pmatrix} 1&\frac{1}{2}&0&|&\frac{5}{18}&\frac{1}{6}&\frac{-5}{18} \\ 0&1&0&|&\frac{-1}{9} & \frac{1}{3}&\frac{1}{9}\\ 0&0&1&|&\frac{2}{9}&\frac{-1}{6}&\frac{5}{18} \end{pmatrix}



R112R2R1R_1-\frac{1}{2}R_2\to\>R_1


=(100130130101913190012916518)=\begin{pmatrix} 1&0&0| & \frac{1}{3}&0&\frac{-1}{3}\\ 0&1&0| & \frac{-1}{9}&\frac{1}{3}&\frac{1}{9}\\ 0&0&1|&\frac{2}{9}&\frac{-1}{6}&\frac{5}{18} \end{pmatrix}


Inverse is matrix on the right of augmented matrix


A1=(130131913192916518)\therefore\>A^{-1}=\begin{pmatrix} \frac{1}{3}& 0&\frac{-1}{3} \\ \frac{-1}{9}&\frac{1}{3} & \frac{1}{9}\\ \frac{2}{9}&\frac{-1}{6}&\frac{5}{18} \end{pmatrix}



Rank is number of non-zeros row on the left of the augmented matrix


\therefore Rank =3=3














Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment