find the inverse of the following matrix A and rank of a 2. 1. 2
1. 3. 0
-1. 1. 2
Augmenting A with a "3\u00d73" identity matrix
"=\\begin{pmatrix}\n 2 & 1&2| &1&0&0\\\\\n 1&3&0| & 0&1&0\\\\\n-1&1&2|&0&0&1\n\\end{pmatrix}"
"\\frac{1}{2}R_1\\to\\>R_1"
"-R_3\\to\\>R_3"
"\\begin{pmatrix}\n 1&\\frac{1}{2}&1&|& \\frac{1}{2}&0&0 \\\\\n 1&3&0&|& 0&1&0\\\\\n1&-1&-2&|&0&0&-1\n\\end{pmatrix}"
"R_2-R_1\\to\\>R_2"
"R_3-R_1\\to\\>R_3"
"\\begin{pmatrix}\n 1&\\frac{1}{2}&1&|&\\frac{1}{2}&0&0 \\\\\n 0&\\frac{5}{2}&-1&|&\\frac{-1}{2}&1&0 \\\\\n0&\\frac{-3}{2}&-3&|&\\frac{-1}{2}&0&-1\n\\end{pmatrix}"
"\\frac{2}{5}R_2\\to\\>R_2"
"\\frac{-2}{3}R_3\\to\\>R_3"
"\\begin{pmatrix}\n 1&\\frac{1}{2}&1&|&\\frac{1}{2}&0&0 \\\\\n 0&1&\\frac{-2}{5}&|&\\frac{-1}{5}&\\frac{2}{5}&0 \\\\\n0&1&2&|&\\frac{1}{3}&0&\\frac{2}{3}\n\\end{pmatrix}"
"\\frac{5}{12}(R_3-R_2)\\to\\>R_3"
"R_2+\\frac{2}{5}R_3\\to\\>R_2"
"\\begin{pmatrix}\n 1&\\frac{1}{2}&1&|&\\frac{1}{2}&0&0\\\\\n 0&1&0&|&\\frac{-1}{9} & \\frac{1}{3}&\\frac{1}{9}\\\\\n0&0&1&|&\\frac{2}{9}&\\frac{-1}{6}&\\frac{5}{18}\n\\end{pmatrix}"
"R_1-R_3\\to\\>R_3"
"\\begin{pmatrix}\n 1&\\frac{1}{2}&0&|&\\frac{5}{18}&\\frac{1}{6}&\\frac{-5}{18} \\\\\n 0&1&0&|&\\frac{-1}{9} & \\frac{1}{3}&\\frac{1}{9}\\\\\n0&0&1&|&\\frac{2}{9}&\\frac{-1}{6}&\\frac{5}{18}\n\\end{pmatrix}"
"R_1-\\frac{1}{2}R_2\\to\\>R_1"
"=\\begin{pmatrix}\n 1&0&0| & \\frac{1}{3}&0&\\frac{-1}{3}\\\\\n 0&1&0| & \\frac{-1}{9}&\\frac{1}{3}&\\frac{1}{9}\\\\\n0&0&1|&\\frac{2}{9}&\\frac{-1}{6}&\\frac{5}{18}\n\\end{pmatrix}"
Inverse is matrix on the right of augmented matrix
"\\therefore\\>A^{-1}=\\begin{pmatrix}\n \\frac{1}{3}& 0&\\frac{-1}{3} \\\\\n \\frac{-1}{9}&\\frac{1}{3} & \\frac{1}{9}\\\\\n\\frac{2}{9}&\\frac{-1}{6}&\\frac{5}{18}\n\\end{pmatrix}"
Rank is number of non-zeros row on the left of the augmented matrix
"\\therefore" Rank "=3"
Comments
Leave a comment