Question #288887

2x square + y square+z square +4 yz +2 xy-2 xx




1
Expert's answer
2022-01-21T14:22:15-0500

2x2+y2+z2+4yz+2xy2xz2x^{2}+y^{2}+z^{2}+4yz+2xy-2xz


NOTE: WE SHALL RE-REPRESENT THE VARAIBALE x, y and z TO VARIABLES x1,x2andx3x_{1},x_{2}\hspace{0.1cm}and\hspace{0.1cm}x_{3} respectively.


NOW, using x1,x2andx3x_{1},x_{2}\hspace{0.1cm}and\hspace{0.1cm}x_{3}

Q(x)=2x12+x22+x32+4x2x3+2x1x22x1x3\displaystyle Q(x)=2x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+4x_{2}x_{3}+2x_{1}x_{2}-2x_{1}x_{3}

The symmetric matrix A with the given quadratic form is

A=A= [211112121]\begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & 2\\ -1 & 2 & 1 \end{bmatrix}

The characteristic equation of A is

(AλI)=λ3+4λ2+λ12=0    λ=3,1+172,1+172\mid(A-\lambda I)\mid=-\lambda^{3}+4\lambda^{2}+\lambda-12=0\\\implies \lambda=3,\frac{-1+17}{2},\frac{1+17}{2}


The corresponding eigen values are:

for λ1=3,isX1=[011]\lambda_{1}=3,\hspace{0.2cm}is\hspace{0.2cm}X_{1}=\begin{bmatrix} 0 \\ 1\\ 1 \end{bmatrix}


for λ2=1+172,isX2=[3+17211]\lambda_{2}=\frac{-1+17}{2},\hspace{0.2cm}is\hspace{0.2cm}X_{2}=\begin{bmatrix} \frac{-3+17}{2} \\ -1\\ 1 \end{bmatrix}


for λ3=1,isX3=[3+17211]\lambda_{3}=1,\hspace{0.2cm}is\hspace{0.2cm}X_{3}=\begin{bmatrix} -\frac{3+17}{2} \\ -1\\ 1 \end{bmatrix}


Clearly, the eigen vectors X1=[011]X_{1}=\begin{bmatrix} 0 \\ 1\\ 1 \end{bmatrix} , X2=[3+17211]X_{2}=\begin{bmatrix} \frac{-3+17}{2} \\ -1\\ 1 \end{bmatrix} and X3=[3+17211]X_{3}=\begin{bmatrix} -\frac{3+17}{2} \\ -1\\ 1 \end{bmatrix} are linearly independent and orthogonal.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS