2 x 2 + y 2 + z 2 + 4 y z + 2 x y − 2 x z 2x^{2}+y^{2}+z^{2}+4yz+2xy-2xz 2 x 2 + y 2 + z 2 + 4 yz + 2 x y − 2 x z
NOTE: WE SHALL RE-REPRESENT THE VARAIBALE x, y and z TO VARIABLES x 1 , x 2 a n d x 3 x_{1},x_{2}\hspace{0.1cm}and\hspace{0.1cm}x_{3} x 1 , x 2 an d x 3 respectively.
NOW, using x 1 , x 2 a n d x 3 x_{1},x_{2}\hspace{0.1cm}and\hspace{0.1cm}x_{3} x 1 , x 2 an d x 3
Q ( x ) = 2 x 1 2 + x 2 2 + x 3 2 + 4 x 2 x 3 + 2 x 1 x 2 − 2 x 1 x 3 \displaystyle Q(x)=2x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+4x_{2}x_{3}+2x_{1}x_{2}-2x_{1}x_{3} Q ( x ) = 2 x 1 2 + x 2 2 + x 3 2 + 4 x 2 x 3 + 2 x 1 x 2 − 2 x 1 x 3
The symmetric matrix A with the given quadratic form is
A = A= A = [ 2 1 − 1 1 1 2 − 1 2 1 ] \begin{bmatrix}
2 & 1 & -1 \\
1 & 1 & 2\\
-1 & 2 & 1
\end{bmatrix} ⎣ ⎡ 2 1 − 1 1 1 2 − 1 2 1 ⎦ ⎤
The characteristic equation of A is
∣ ( A − λ I ) ∣ = − λ 3 + 4 λ 2 + λ − 12 = 0 ⟹ λ = 3 , − 1 + 17 2 , 1 + 17 2 \mid(A-\lambda I)\mid=-\lambda^{3}+4\lambda^{2}+\lambda-12=0\\\implies \lambda=3,\frac{-1+17}{2},\frac{1+17}{2} ∣ ( A − λ I ) ∣= − λ 3 + 4 λ 2 + λ − 12 = 0 ⟹ λ = 3 , 2 − 1 + 17 , 2 1 + 17
The corresponding eigen values are:
for λ 1 = 3 , i s X 1 = [ 0 1 1 ] \lambda_{1}=3,\hspace{0.2cm}is\hspace{0.2cm}X_{1}=\begin{bmatrix}
0 \\
1\\
1
\end{bmatrix} λ 1 = 3 , i s X 1 = ⎣ ⎡ 0 1 1 ⎦ ⎤
for λ 2 = − 1 + 17 2 , i s X 2 = [ − 3 + 17 2 − 1 1 ] \lambda_{2}=\frac{-1+17}{2},\hspace{0.2cm}is\hspace{0.2cm}X_{2}=\begin{bmatrix}
\frac{-3+17}{2} \\
-1\\
1
\end{bmatrix} λ 2 = 2 − 1 + 17 , i s X 2 = ⎣ ⎡ 2 − 3 + 17 − 1 1 ⎦ ⎤
for λ 3 = 1 , i s X 3 = [ − 3 + 17 2 − 1 1 ] \lambda_{3}=1,\hspace{0.2cm}is\hspace{0.2cm}X_{3}=\begin{bmatrix}
-\frac{3+17}{2} \\
-1\\
1
\end{bmatrix} λ 3 = 1 , i s X 3 = ⎣ ⎡ − 2 3 + 17 − 1 1 ⎦ ⎤
Clearly, the eigen vectors X 1 = [ 0 1 1 ] X_{1}=\begin{bmatrix}
0 \\
1\\
1
\end{bmatrix} X 1 = ⎣ ⎡ 0 1 1 ⎦ ⎤ , X 2 = [ − 3 + 17 2 − 1 1 ] X_{2}=\begin{bmatrix}
\frac{-3+17}{2} \\
-1\\
1
\end{bmatrix} X 2 = ⎣ ⎡ 2 − 3 + 17 − 1 1 ⎦ ⎤ and X 3 = [ − 3 + 17 2 − 1 1 ] X_{3}=\begin{bmatrix}
-\frac{3+17}{2} \\
-1\\
1
\end{bmatrix} X 3 = ⎣ ⎡ − 2 3 + 17 − 1 1 ⎦ ⎤ are linearly independent and orthogonal.
Comments