2x2+y2+z2+4yz+2xy−2xz
NOTE: WE SHALL RE-REPRESENT THE VARAIBALE x, y and z TO VARIABLES x1,x2andx3 respectively.
NOW, using x1,x2andx3
Q(x)=2x12+x22+x32+4x2x3+2x1x2−2x1x3
The symmetric matrix A with the given quadratic form is
A= ⎣⎡21−1112−121⎦⎤
The characteristic equation of A is
∣(A−λI)∣=−λ3+4λ2+λ−12=0⟹λ=3,2−1+17,21+17
The corresponding eigen values are:
for λ1=3,isX1=⎣⎡011⎦⎤
for λ2=2−1+17,isX2=⎣⎡2−3+17−11⎦⎤
for λ3=1,isX3=⎣⎡−23+17−11⎦⎤
Clearly, the eigen vectors X1=⎣⎡011⎦⎤ , X2=⎣⎡2−3+17−11⎦⎤ and X3=⎣⎡−23+17−11⎦⎤ are linearly independent and orthogonal.
Comments