Given
T:R2→R2 such map T(x,y)=(ax+by,(x+dy). 
T(x,y)=(ax+by,cx+dy)⋅u,v∈R2 such that 
 T(x,y) i.e ax+bycx+dy[acbd][xy][xy][xy]=(u,v)⋅=u=v=[uv]=[acbd]−1[uv].=[d−c−ba]ad−bc1[uv] 
There exists (x, y) such that
 T(x,y)=(u,v) iff ad−bc=0.  
a, b, c, d are scalars such that ad−bc=0. 
Comments