Answer to Question #278547 in Linear Algebra for Tharun

Question #278547

Verify Rank-nullity theorem for the linear transformation T:R³----->R³ defined by T(x,y,z)=(x-y, 2y+z, x+y+z).

1
Expert's answer
2021-12-14T07:58:32-0500

Let us verify Rank-nullity theorem for the linear transformation T:R3R3T:\R^3\to \R^3 defined by T(x,y,z)=(xy,2y+z,x+y+z).T(x,y,z)=(x-y, 2y+z, x+y+z).


For this let us find the kernal and the range of T.T.


Ker(T)={(x,y,z)R:T(x,y,z)=(0,0,0)}={(x,y,z)R:(xy,2y+z,x+y+z)=(0,0,0)}={(x,y,z)R:xy=0,2y+z=0,x+y+z=0}={(x,y,z)R:x=y,z=2y,x+y+z=0}={(y,y,2y)R:yR}={y(1,1,2)R:yR}.Ker(T)=\{(x,y,z)\in\R:T(x,y,z)=(0,0,0)\} \\=\{(x,y,z)\in\R:(x-y, 2y+z, x+y+z)=(0,0,0)\} \\=\{(x,y,z)\in\R:x-y=0, 2y+z=0, x+y+z=0\} \\=\{(x,y,z)\in\R:x=y, z=-2y, x+y+z=0\} \\=\{(y,y,-2y)\in\R:y\in\R\} \\=\{y(1,1,-2)\in\R:y\in\R\}.


It follows that dim(Ker(T))=1.\dim(Ker(T))=1.


Let (a,b,c)Range(T).(a,b,c)\in Range(T). Then T(x,y,z)=(a,b,c)T(x,y,z)=(a,b,c) for some (x,y,z)R.(x,y,z)\in\R.

Therefore, xy=a,2y+z=b,x+y+z=c.x-y=a, 2y+z=b, x+y+z=c.

It follows that xy=(x+y+z)(2y+z)=cb,x-y=(x+y+z)-(2y+z)=c-b, and hence a=cb.a=c-b.

Then


Range(T)={(a,b,c)R:T(x,y,z)=(a,b,c)}={(cb,b,c):b,cR}={c(1,0,1)+b(1,1,0):b,cR}.Range(T)=\{(a,b,c)\in\R: T(x,y,z)=(a,b,c)\} \\=\{(c-b,b,c):b,c\in\R\} \\=\{c(1,0,1)+b(-1,1,0):b,c\in\R\}.


Consequently, dim(range(T))=2.\dim(range(T))=2.


Since dim(Ker(T))+dim(range(T))=1+2=3=dim(R3),\dim(Ker(T))+\dim(range(T))=1+2=3=\dim(\R^3), we conclude that the Rank-nullity theorem is indeed true.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment