Let us verify Rank-nullity theorem for the linear transformation T:R3→R3 defined by T(x,y,z)=(x−y,2y+z,x+y+z).
For this let us find the kernal and the range of T.
Ker(T)={(x,y,z)∈R:T(x,y,z)=(0,0,0)}={(x,y,z)∈R:(x−y,2y+z,x+y+z)=(0,0,0)}={(x,y,z)∈R:x−y=0,2y+z=0,x+y+z=0}={(x,y,z)∈R:x=y,z=−2y,x+y+z=0}={(y,y,−2y)∈R:y∈R}={y(1,1,−2)∈R:y∈R}.
It follows that dim(Ker(T))=1.
Let (a,b,c)∈Range(T). Then T(x,y,z)=(a,b,c) for some (x,y,z)∈R.
Therefore, x−y=a,2y+z=b,x+y+z=c.
It follows that x−y=(x+y+z)−(2y+z)=c−b, and hence a=c−b.
Then
Range(T)={(a,b,c)∈R:T(x,y,z)=(a,b,c)}={(c−b,b,c):b,c∈R}={c(1,0,1)+b(−1,1,0):b,c∈R}.
Consequently, dim(range(T))=2.
Since dim(Ker(T))+dim(range(T))=1+2=3=dim(R3), we conclude that the Rank-nullity theorem is indeed true.
Comments
Leave a comment