We are tasked with finding a nonzero solution ( a 1 , a 2 , a 3 , a 4 ) \left(a_{1}, a_{2}, a_{3}, a_{4}\right) ( a 1 , a 2 , a 3 , a 4 ) to the equation:
a 1 x 1 + a 2 x 2 + a 3 x 3 + a 4 x 4 = 0 a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}=\mathbf{0} a 1 x 1 + a 2 x 2 + a 3 x 3 + a 4 x 4 = 0
This is the same as finding a nonzero solution ( a 1 , a 2 , a 3 , a 4 ) \left(a_{1}, a_{2}, a_{3}, a_{4}\right) ( a 1 , a 2 , a 3 , a 4 ) to the system
{ 1 a 1 − 3 a 2 + 1 a 3 + 2 a 2 = 0 − 1 a 1 + 2 a 2 + 2 a 3 + 3 a 4 = 0 2 a 1 + 1 a 2 − 3 a 3 + 1 a 4 = 0 \left\{\begin{array}{l}
1 a_{1}-3 a_{2}+1 a_{3}+2 a_{2}=0 \\
-1 a_{1}+2 a_{2}+2 a_{3}+3 a_{4}=0 \\
2 a_{1}+1 a_{2}-3 a_{3}+1 a_{4}=0
\end{array}\right. ⎩ ⎨ ⎧ 1 a 1 − 3 a 2 + 1 a 3 + 2 a 2 = 0 − 1 a 1 + 2 a 2 + 2 a 3 + 3 a 4 = 0 2 a 1 + 1 a 2 − 3 a 3 + 1 a 4 = 0
This is the same as finding a solution [ a 1 , a 2 , a 3 , a 4 ] T \left[a_{1}, a_{2}, a_{3}, a_{4}\right]^{T} [ a 1 , a 2 , a 3 , a 4 ] T to the matrix equation
[ 1 − 3 1 2 − 1 2 2 3 2 1 − 3 1 ] [ a 1 a 2 a 3 a 4 ] = [ 0 0 0 ] \left[\begin{array}{cccc}
1 & -3 & 1 & 2 \\
-1 & 2 & 2 & 3 \\
2 & 1 & -3 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] ⎣ ⎡ 1 − 1 2 − 3 2 1 1 2 − 3 2 3 1 ⎦ ⎤ ⎣ ⎡ a 1 a 2 a 3 a 4 ⎦ ⎤ = ⎣ ⎡ 0 0 0 ⎦ ⎤
In other words, we are trying to find the kernel of the matrix.
Row reducing
rref ( [ 1 − 3 1 2 − 1 2 2 3 2 1 − 3 1 ] ) = [ 1 0 0 3 0 1 0 1 0 0 1 2 ] \operatorname{rref}\left(\left[\begin{array}{cccc}
1 & -3 & 1 & 2 \\
-1 & 2 & 2 & 3 \\
2 & 1 & -3 & 1
\end{array}\right]\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] rref ⎝ ⎛ ⎣ ⎡ 1 − 1 2 − 3 2 1 1 2 − 3 2 3 1 ⎦ ⎤ ⎠ ⎞ = ⎣ ⎡ 1 0 0 0 1 0 0 0 1 3 1 2 ⎦ ⎤
Remembering that row-reducing a system of equations retains the solution-set of the system and reinterpreting this as a system of equations this is the system:
{ 1 a 1 + 3 a 4 = 0 1 a 2 + 1 a 4 = 0 1 a 3 + 2 a 4 = 0 \left\{\begin{array}{rrrrr}
1 a_{1} & & & +3 a_{4} & =0 \\
& 1 a_{2} & & +1 a_{4} & =0 \\
& & 1 a_{3} & +2 a_{4} & =0
\end{array}\right. ⎩ ⎨ ⎧ 1 a 1 1 a 2 1 a 3 + 3 a 4 + 1 a 4 + 2 a 4 = 0 = 0 = 0
This tells us that for ( a 1 , a 2 , a 3 , a 4 ) \left(a_{1}, a_{2}, a_{3}, a_{4}\right) ( a 1 , a 2 , a 3 , a 4 ) to be a solution that a 1 = − 3 a 4 , a 2 = − a 4 a_{1}=-3 a_{4}, a_{2}=-a_{4} a 1 = − 3 a 4 , a 2 = − a 4 and a 3 = − 2 a 4 a_{3}=-2 a_{4} a 3 = − 2 a 4
Picking any number (other than zero) for a 4 a_{4} a 4 , we can then write a linear combination of x 1 , … , x 4 x_{1}, \ldots, x_{4} x 1 , … , x 4 resulting in zero.
Comments