Answer to Question #277349 in Linear Algebra for Dani

Question #277349

Give an example showing that the union of two subspace of a vector space V over a filed F is not necessarily a subspace of V over F.


1
Expert's answer
2021-12-15T10:02:47-0500

The reason why this can happen is that all vector spaces, and hence subspaces too, must be closed under addition (and scalar multiplication). The union of two subspacestakes all the elements already in those spaces, and nothing more. In the union of subspaces W1 and W2 there are new combinations of vectors we can add together thatwe couldn’t before, like like v1+w2 where v1 W1 and w2∈W2. For example, take W1 to be the x-axis and W2 the y-axis, both subspaces of R2 .Their union includes both (3,0) and (0,5) whose sum (3,5) is not in the union. Hence the union is not a vector space\text{The reason why this can happen is that all vector spaces, and hence subspaces too, }\\\text{must be closed under addition (and scalar multiplication). The union of two subspaces}\\\text{takes all the elements already in those spaces, and nothing more. In the union of}\\\text{ subspaces $W_1$ and $W_2$ there are new combinations of vectors we can add together that}\\\text{we couldn't before, like like $v_1+w_2$ where v1$\in$ W1 and w2∈W2. }\\ \text{For example, take $W_1$ to be the x-axis and $W_2$ the y-axis, both subspaces of $\mathbb{R}^2$ .}\\ \text{Their union includes both (3,0) and (0,5) whose sum (3,5) is not in the union. Hence }\\ \text{the union is not a vector space}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment