The length of the vector v ⃗ 1 \vec v_1 v 1 is 1 1 1 as
∣ ∣ v ⃗ 1 ∣ ∣ = ( 1 / 10 ) 2 + ( 0 ) 2 + ( − 3 / 10 ) 2 = 1 ||\vec v_1 ||=\sqrt{(1/\sqrt{10})^2+(0)^2+(-3/\sqrt{10})^2}=1 ∣∣ v 1 ∣∣ = ( 1/ 10 ) 2 + ( 0 ) 2 + ( − 3/ 10 ) 2 = 1 We want to find two vectors v ⃗ 2 , v ⃗ 3 \vec v_2,\vec v_3 v 2 , v 3 such that { v ⃗ 1 , v ⃗ 2 , v ⃗ 3 } \{\vec v_1,\vec v_2,\vec v_3\} { v 1 , v 2 , v 3 } is an orthonormal basis for R 3 . \R^3. R 3 .
Let u ⃗ = ⟨ x , y , z ⟩ \vec u=\langle x, y, z \rangle u = ⟨ x , y , z ⟩ be a vector that is perpendicular to v ⃗ 1 . \vec v_1. v 1 .
Then we have u ⃗ ⋅ v ⃗ 1 = 0 , \vec u\cdot \vec v_1=0, u ⋅ v 1 = 0 , and hence we have the relation
( 1 / 10 ) ( x ) + ( 0 ) ( y ) + ( − 3 / 10 ) ( z ) = 0 (1/\sqrt{10})(x)+(0)(y)+(-3/\sqrt{10})(z)=0 ( 1/ 10 ) ( x ) + ( 0 ) ( y ) + ( − 3/ 10 ) ( z ) = 0
x − 3 z = 0 x-3z=0 x − 3 z = 0 For example, the vector u ⃗ = ⟨ 3 , 1 , 1 ⟩ \vec u=\langle 3, 1, 1 \rangle u = ⟨ 3 , 1 , 1 ⟩ satisfies the relation, anf hence u ⃗ ⋅ v ⃗ 1 = 0. \vec u\cdot \vec v_1=0. u ⋅ v 1 = 0.
Let us define the third vector w ⃗ \vec w w to be the cross product of u ⃗ \vec u u and v ⃗ 1 \vec v_1 v 1
w ⃗ = u ⃗ × v ⃗ 1 = ∣ i ⃗ j ⃗ k ⃗ 3 1 1 1 / 10 0 − 3 / 10 ∣ \vec w=\vec u\times\vec v_1=\begin{vmatrix}
\vec i & \vec j & \vec k \\
3 & 1 & 1 \\
1/\sqrt{10} & 0 & -3/\sqrt{10}
\end{vmatrix} w = u × v 1 = ∣ ∣ i 3 1/ 10 j 1 0 k 1 − 3/ 10 ∣ ∣
= i ⃗ ∣ 1 1 0 − 3 / 10 ∣ − j ⃗ ∣ 3 1 1 / 10 − 3 / 10 ∣ =\vec i\begin{vmatrix}
1 & 1 \\
0 & -3/\sqrt{10}
\end{vmatrix}-\vec j\begin{vmatrix}
3 & 1 \\
1/\sqrt{10} & -3/\sqrt{10}
\end{vmatrix} = i ∣ ∣ 1 0 1 − 3/ 10 ∣ ∣ − j ∣ ∣ 3 1/ 10 1 − 3/ 10 ∣ ∣
+ k ⃗ ∣ 3 1 1 / 10 0 ∣ +\vec k\begin{vmatrix}
3 & 1 \\
1/\sqrt{10} & 0
\end{vmatrix} + k ∣ ∣ 3 1/ 10 1 0 ∣ ∣
= ( − 3 / 10 ) i ⃗ + ( 10 / 10 ) j ⃗ + ( − 1 / 10 ) k ⃗ =(-3/\sqrt{10})\vec i+(10/\sqrt{10})\vec j+(-1/\sqrt{10})\vec k = ( − 3/ 10 ) i + ( 10/ 10 ) j + ( − 1/ 10 ) k By the property of the cross product, the vector w ⃗ \vec w w is perpendicular to both u ⃗ , v ⃗ 1 . \vec u, \vec v_1. u , v 1 .
∣ ∣ u ⃗ ∣ ∣ = ( 3 ) 2 + ( 1 ) 2 + ( 1 ) 2 = 11 ||\vec u||=\sqrt{(3)^2+(1)^2+(1)^2}=\sqrt{11} ∣∣ u ∣∣ = ( 3 ) 2 + ( 1 ) 2 + ( 1 ) 2 = 11
∣ ∣ w ⃗ ∣ ∣ = ( − 3 / 10 ) 2 + ( 10 / 10 ) 2 + ( − 1 / 10 ) 2 ||\vec w||=\sqrt{(-3/\sqrt{10})^2+(10/\sqrt{10})^2+(-1/\sqrt{10})^2} ∣∣ w ∣∣ = ( − 3/ 10 ) 2 + ( 10/ 10 ) 2 + ( − 1/ 10 ) 2
= 11 =\sqrt{11} = 11 Therefore, the set
{ v ⃗ 1 , v ⃗ 2 , v ⃗ 3 } \{\vec v_1,\vec v_2,\vec v_3\} { v 1 , v 2 , v 3 }
= { [ 1 / 10 0 − 3 / 10 ] , [ 3 / 11 1 / 11 1 / 11 ] , [ − 3 / 110 10 / 110 − 1 / 110 ] } =\bigg\{\begin{bmatrix}
1/\sqrt{10} \\
0 \\
-3/\sqrt{10}
\end{bmatrix},\begin{bmatrix}
3/\sqrt{11} \\
1/\sqrt{11}\\
1/\sqrt{11}
\end{bmatrix},\begin{bmatrix}
-3/\sqrt{110} \\
10/\sqrt{110}\\
-1/\sqrt{110}
\end{bmatrix}\bigg\} = { ⎣ ⎡ 1/ 10 0 − 3/ 10 ⎦ ⎤ , ⎣ ⎡ 3/ 11 1/ 11 1/ 11 ⎦ ⎤ , ⎣ ⎡ − 3/ 110 10/ 110 − 1/ 110 ⎦ ⎤ }
is an orthonormal basis for R 3 . \R^3. R 3 .
Comments