Question #275035

Find an orthonormal basis of R^3 of which (1√10,0,-3/√10) is one element

1
Expert's answer
2021-12-05T18:29:29-0500

The length of the vector v1\vec v_1 is 11 as


v1=(1/10)2+(0)2+(3/10)2=1||\vec v_1 ||=\sqrt{(1/\sqrt{10})^2+(0)^2+(-3/\sqrt{10})^2}=1

We want to find two vectors v2,v3\vec v_2,\vec v_3 such that {v1,v2,v3}\{\vec v_1,\vec v_2,\vec v_3\}is an orthonormal basis for R3.\R^3.

Let u=x,y,z\vec u=\langle x, y, z \rangle be a vector that is perpendicular to v1.\vec v_1.

Then we have uv1=0,\vec u\cdot \vec v_1=0, and hence we have the relation


(1/10)(x)+(0)(y)+(3/10)(z)=0(1/\sqrt{10})(x)+(0)(y)+(-3/\sqrt{10})(z)=0

x3z=0x-3z=0

For example, the vector u=3,1,1\vec u=\langle 3, 1, 1 \rangle satisfies the relation, anf hence uv1=0.\vec u\cdot \vec v_1=0.

Let us define the third vector w\vec w to be the cross product of u\vec u and v1\vec v_1


w=u×v1=ijk3111/1003/10\vec w=\vec u\times\vec v_1=\begin{vmatrix} \vec i & \vec j & \vec k \\ 3 & 1 & 1 \\ 1/\sqrt{10} & 0 & -3/\sqrt{10} \end{vmatrix}

=i1103/10j311/103/10=\vec i\begin{vmatrix} 1 & 1 \\ 0 & -3/\sqrt{10} \end{vmatrix}-\vec j\begin{vmatrix} 3 & 1 \\ 1/\sqrt{10} & -3/\sqrt{10} \end{vmatrix}

+k311/100+\vec k\begin{vmatrix} 3 & 1 \\ 1/\sqrt{10} & 0 \end{vmatrix}


=(3/10)i+(10/10)j+(1/10)k=(-3/\sqrt{10})\vec i+(10/\sqrt{10})\vec j+(-1/\sqrt{10})\vec k

By the property of the cross product, the vector w\vec w is perpendicular to both u,v1.\vec u, \vec v_1.

u=(3)2+(1)2+(1)2=11||\vec u||=\sqrt{(3)^2+(1)^2+(1)^2}=\sqrt{11}

w=(3/10)2+(10/10)2+(1/10)2||\vec w||=\sqrt{(-3/\sqrt{10})^2+(10/\sqrt{10})^2+(-1/\sqrt{10})^2}

=11=\sqrt{11}

Therefore, the set


{v1,v2,v3}\{\vec v_1,\vec v_2,\vec v_3\}


={[1/1003/10],[3/111/111/11],[3/11010/1101/110]}=\bigg\{\begin{bmatrix} 1/\sqrt{10} \\ 0 \\ -3/\sqrt{10} \end{bmatrix},\begin{bmatrix} 3/\sqrt{11} \\ 1/\sqrt{11}\\ 1/\sqrt{11} \end{bmatrix},\begin{bmatrix} -3/\sqrt{110} \\ 10/\sqrt{110}\\ -1/\sqrt{110} \end{bmatrix}\bigg\}

is an orthonormal basis for R3.\R^3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS