Complete { (2, 0, 3)} to form an orthonormal basis of R^3
Orthogonal vector to one given vector (a,b,c) we take as (0,-c,b).
So for "x_1=(2,0,3)" we have "x_2=(0,-3,0)" with property "x_1\\cdot x_2=2\\cdot0+0\\cdot(-3)+3\\cdot 0=0" .
We serach third vector in the form "x_3=(a,b,c)" . We must provide that "x_1\\cdot x_3=2\\cdot a+0\\cdot b+3\\cdot c=2\\cdot a+3\\cdot c=0" and "x_2\\cdot x_3=0\\cdot a+(-3)\\cdot b+0\\cdot c=(-3)\\cdot b=0"
Thus we have the linear system:
"\\begin{cases}\n 2a+3c=0 \\\\\n -3b=0\n\\end{cases}"
This system has 3 unknowns: a,b,c, we may take one of them with arbitrary non zero value, let we assign c=2, then from the system we get a=-3,b=0 therefore x3=(-3,0,2).
After orthogonalization we provide normalization:
"x'_1=\\frac{x_1}{||x_1||}=\\frac{(2,0,3)}{\\sqrt{2^2+0^2+3^2}}=\\frac{(2,0,3)}{\\sqrt{13}}=\\left( \\frac{2}{\\sqrt{13}},0,\\frac{3}{\\sqrt{13}} \\right)"
"x'_2=\\frac{x_2}{||x_2||}=\\frac{(0,-3,0)}{\\sqrt{0^2+(-3)^2+0^2}}=\\frac{(0,-3,0)}{3}=\\left( 0,-1,0 \\right)"
"x'_3=\\frac{x_3}{||x_3||}=\\frac{(-3,0,2)}{\\sqrt{(-3)^2+0^2+2^2}}=\\frac{(-3,0,2)}{\\sqrt{13}}=\\left( \\frac{-3}{\\sqrt{13}},0,\\frac{2}{\\sqrt{13}} \\right)"
Comments
Leave a comment