Question #274210

Check that T = R^3 to R^3, defined by


T(x1,x2,X3)= (x1+X3, x2+2x3, x1-x2-x3) is a linear operator. Also find the kernel

1
Expert's answer
2021-12-06T16:24:33-0500

properties of linear operator:

T(x+y)=T(x)+T(y)T(x+y)=T(x)+T(y)

T(cx)=cT(x)T(cx)=cT(x)


we have:

T((x1,x2,x3)+(y1,y2,y3))=T((x_1,x_2,x_3)+(y_1,y_2,y_3))=

=(x1+x3+y1+y3,x2+2x3+y2+2y3,x1x2x3+y1y2y3)=(x_1+x_3+y_1+y_3, x_2+2x_3+y_2+2y_3, x_1-x_2-x_3+y_1-y_2-y_3)

T(x1,x2,x3)+T(y1,y2,y3)=T(x_1,x_2,x_3)+T(y_1,y_2,y_3)=

=(x1+x3,x2+2x3,x1x2x3)+(y1+y3,y2+2y3,y1y2y3)==(x_1+x_3, x_2+2x_3, x_1-x_2-x_3) +(y_1+y_3, y_2+2y_3, y_1-y_2-y_3)=

=(x1+x3+y1+y3,x2+2x3+y2+2y3,x1x2x3+y1y2y3)=(x_1+x_3+y_1+y_3, x_2+2x_3+y_2+2y_3, x_1-x_2-x_3+y_1-y_2-y_3)

T((x1,x2,x3)+(y1,y2,y3))=T(x1,x2,x3)+T(y1,y2,y3)T((x_1,x_2,x_3)+(y_1,y_2,y_3))=T(x_1,x_2,x_3)+T(y_1,y_2,y_3)


T(cx1,cx2,cx3)=(c(x1+x3),c(x2+2x3),c(x1x2x3))T(cx_1,cx_2,cx_3)=(c(x_1+x_3), c(x_2+2x_3),c( x_1-x_2-x_3))

cT(x1,x2,x3)=c(x1+x3,x2+2x3,x1x2x3)=cT(x_1,x_2,x_3)=c(x_1+x_3, x_2+2x_3, x_1-x_2-x_3)=

=(c(x1+x3),c(x2+2x3),c(x1x2x3))=(c(x_1+x_3), c(x_2+2x_3),c( x_1-x_2-x_3))

T(cx1,cx2,cx3)=cT(x1,x2,x3)T(cx_1,cx_2,cx_3)=cT(x_1,x_2,x_3)


so, T(x1,x2,x3)T(x_1,x_2,x_3) is linear operator


for kernel:

T(x1,x2,x3)=(x1+x3,x2+2x3,x1x2x3)=0T(x_1,x_2,x_3)=(x_1+x_3, x_2+2x_3, x_1-x_2-x_3) =0


x1+x3=0x_1+x_3=0

x2+2x3=0x_2+2x_3=0

x1x2x3=0x_1-x_2-x_3=0

x1=x3,x2=2x3x_1=-x_3,x_2=-2x_3


kernel:

(x1,x2,x3)=(x3,2x3,x3)(x_1,x_2,x_3)=(-x_3,-2x_3,x_3)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS