If some eigenvalues of a matrix are repeated, the matrix is not diagonisable.true or false with full explanation
Counterexample
Let A=[100020002].A=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \\ \end{bmatrix}.A=⎣⎡100020002⎦⎤. The matrix AAA is diagonal, hence diagonisable.
Find the eigenvalues of AAA
λ1=1,λ2=λ3=2.\lambda_1=1, \lambda_2=\lambda_3=2.λ1=1,λ2=λ3=2.
The matrix AAA has eigenvalues 1,2,21,2,21,2,2 (not all distinct), but is diagonisable.
False.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments