If some eigenvalues of a matrix are repeated, the matrix is not diagonisable.true or false with full explanation
Counterexample
Let "A=\\begin{bmatrix}\n 1 & 0 & 0 \\\\\n 0 & 2 & 0 \\\\\n 0 & 0 & 2 \\\\\n\\end{bmatrix}." The matrix "A" is diagonal, hence diagonisable.
Find the eigenvalues of "A"
"\\det(A-\\lambda I)=\\begin{vmatrix}\n 1-\\lambda & 0 & 0 \\\\\n 0 & 2-\\lambda & 0 \\\\\n 0 & 0 & 2-\\lambda \\\\\n\\end{vmatrix}"
"=(1-\\lambda)(2-\\lambda)^2=0"
"\\lambda_1=1, \\lambda_2=\\lambda_3=2."
The matrix "A" has eigenvalues "1,2,2" (not all distinct), but is diagonisable.
False.
Comments
Leave a comment