Counterexample
Let A = [ 1 0 0 0 2 0 0 0 2 ] . A=\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2 \\
\end{bmatrix}. A = ⎣ ⎡ 1 0 0 0 2 0 0 0 2 ⎦ ⎤ . The matrix A A A is diagonal, hence diagonisable.
Find the eigenvalues of A A A
A − λ I = [ 1 − λ 0 0 0 2 − λ 0 0 0 2 − λ ] A-\lambda I=\begin{bmatrix}
1-\lambda & 0 & 0 \\
0 & 2-\lambda & 0 \\
0 & 0 & 2-\lambda \\
\end{bmatrix} A − λ I = ⎣ ⎡ 1 − λ 0 0 0 2 − λ 0 0 0 2 − λ ⎦ ⎤
det ( A − λ I ) = ∣ 1 − λ 0 0 0 2 − λ 0 0 0 2 − λ ∣ \det(A-\lambda I)=\begin{vmatrix}
1-\lambda & 0 & 0 \\
0 & 2-\lambda & 0 \\
0 & 0 & 2-\lambda \\
\end{vmatrix} det ( A − λ I ) = ∣ ∣ 1 − λ 0 0 0 2 − λ 0 0 0 2 − λ ∣ ∣
= ( 1 − λ ) ( 2 − λ ) 2 = 0 =(1-\lambda)(2-\lambda)^2=0 = ( 1 − λ ) ( 2 − λ ) 2 = 0 λ 1 = 1 , λ 2 = λ 3 = 2. \lambda_1=1, \lambda_2=\lambda_3=2. λ 1 = 1 , λ 2 = λ 3 = 2.
The matrix A A A has eigenvalues 1 , 2 , 2 1,2,2 1 , 2 , 2 (not all distinct), but is diagonisable.
False.
Comments