1.
( 300 112 109 ∣ 521 252 156 330 ∣ 738 108 − 123 121 ∣ 106 ) \begin{pmatrix}
300 & 112&109&|&521 \\
252 & 156&330&|&738 \\
108 & -123&121&|&106 \\
\end{pmatrix} ⎝ ⎛ 300 252 108 112 156 − 123 109 330 121 ∣ ∣ ∣ 521 738 106 ⎠ ⎞
divide the 1 row by 300:
( 1 28 / 75 109 / 300 ∣ 521 / 300 252 156 330 ∣ 738 108 − 123 121 ∣ 106 ) \begin{pmatrix}
1 & 28/75&109/300&|&521/300 \\
252 & 156&330&|&738 \\
108 & -123&121&|&106 \\
\end{pmatrix} ⎝ ⎛ 1 252 108 28/75 156 − 123 109/300 330 121 ∣ ∣ ∣ 521/300 738 106 ⎠ ⎞
multiply 1 row by 252 and subtract it from 2 row; multiply 1 row by 108 and subtract it from 3 row:
( 1 28 / 75 109 / 300 ∣ 521 / 300 0 61.92 238.44 ∣ 300.36 0 − 163.32 81.76 ∣ − 81.56 ) \begin{pmatrix}
1 & 28/75&109/300&|&521/300 \\
0 & 61.92&238.44&|&300.36 \\
0 & -163.32&81.76&|&-81.56 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 28/75 61.92 − 163.32 109/300 238.44 81.76 ∣ ∣ ∣ 521/300 300.36 − 81.56 ⎠ ⎞
divide the 2 row by 61.92:
( 1 28 / 75 109 / 300 ∣ 521 / 300 0 1 1987 / 516 ∣ 2503 / 516 0 − 163.32 81.76 ∣ − 81.56 ) \begin{pmatrix}
1 & 28/75&109/300&|&521/300 \\
0 & 1&1987/516&|&2503/516 \\
0 & -163.32&81.76&|&-81.56 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 28/75 1 − 163.32 109/300 1987/516 81.76 ∣ ∣ ∣ 521/300 2503/516 − 81.56 ⎠ ⎞
multiply 2 row by 28/75 and subtract it from 1 row; (multiply 2 row by 163.32 and add it to 3 row:
( 1 0 − 1663 / 1548 ∣ − 115 / 1548 0 1 1987 / 516 ∣ 2503 / 516 0 0 122235 / 172 ∣ 122235 / 172 ) \begin{pmatrix}
1 & 0&-1663/1548&|&-115/1548 \\
0 & 1&1987/516&|&2503/516 \\
0 &0&122235/172&|&122235/172 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 − 1663/1548 1987/516 122235/172 ∣ ∣ ∣ − 115/1548 2503/516 122235/172 ⎠ ⎞
divide the 3 row by 122235/172:
( 1 0 − 1663 / 1548 ∣ − 115 / 1548 0 1 1987 / 516 ∣ 2503 / 516 0 0 1 ∣ 1 ) \begin{pmatrix}
1 & 0&-1663/1548&|&-115/1548 \\
0 & 1&1987/516&|&2503/516 \\
0 &0&1&|&1 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 − 1663/1548 1987/516 1 ∣ ∣ ∣ − 115/1548 2503/516 1 ⎠ ⎞
(multiply 3 row by 1663/1548 and add it to 1 row; multiply 3 row by 1987/516 and subtract it from 2 row:
( 1 0 0 ∣ 1 0 1 0 ∣ 1 0 0 1 ∣ 1 ) \begin{pmatrix}
1 & 0&0&|&1 \\
0 & 1&0&|&1 \\
0 &0&1&|&1 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 0 0 1 ∣ ∣ ∣ 1 1 1 ⎠ ⎞
x 1 = x 2 = x 3 = 1 x_1=x_2=x_3=1 x 1 = x 2 = x 3 = 1
2.
( 1 1 1 ∣ 5 2 3 5 ∣ 8 4 0 5 ∣ 2 ) \begin{pmatrix}
1 & 1&1&|&5 \\
2 & 3&5&|&8 \\
4 & 0&5&|&2 \\
\end{pmatrix} ⎝ ⎛ 1 2 4 1 3 0 1 5 5 ∣ ∣ ∣ 5 8 2 ⎠ ⎞
multiply 1 row by 2 and subtract it from 2 row; multiply 1 row by 4 and subtract it from 3 row:
( 1 1 1 ∣ 5 0 1 3 ∣ − 2 0 − 4 1 ∣ − 18 ) \begin{pmatrix}
1 & 1&1&|&5 \\
0 & 1&3&|&-2 \\
0 & -4&1&|&-18 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 1 1 − 4 1 3 1 ∣ ∣ ∣ 5 − 2 − 18 ⎠ ⎞
multiply 2 row by 1 and subtract it from 1 row; multiply 2 row by 4 and add it to 3 row:
( 1 0 − 2 ∣ 7 0 1 3 ∣ − 2 0 0 13 ∣ − 26 ) \begin{pmatrix}
1 & 0&-2&|&7 \\
0 & 1&3&|&-2 \\
0 & 0&13&|&-26 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 − 2 3 13 ∣ ∣ ∣ 7 − 2 − 26 ⎠ ⎞
divide the 3 row by 13:
( 1 0 − 2 ∣ 7 0 1 3 ∣ − 2 0 0 1 ∣ − 2 ) \begin{pmatrix}
1 & 0&-2&|&7 \\
0 & 1&3&|&-2 \\
0 & 0&1&|&-2 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 − 2 3 1 ∣ ∣ ∣ 7 − 2 − 2 ⎠ ⎞
multiply 3 row by 2 and add it to 1 row; multiply 3 row by 3 and subtract it from 2 row:
( 1 0 0 ∣ 3 0 1 0 ∣ 4 0 0 1 ∣ − 2 ) \begin{pmatrix}
1 & 0&0&|&3 \\
0 & 1&0&|&4 \\
0 & 0&1&|&-2 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 0 0 1 ∣ ∣ ∣ 3 4 − 2 ⎠ ⎞
x = 3 , y = 4 , z = − 2 x=3,y=4,z=-2 x = 3 , y = 4 , z = − 2
Comments