5x +2y +z =-8
x -2y -3z =0
-x +y +2z =3
Solved this problem by using Gauess Gordan method.
"\\begin{cases}\n5x+2y+z=-8\n\\\\\nx-2y-3z=0\n\\\\\n-x+y+2z=3\n\\end{cases}"
"\\begin{bmatrix} \n5&2&1&|&-8\n\\\\\n1&-2&-3&|&0\n\\\\\n-1&1&2&|&3\n\\end{bmatrix}\n\n\\overset{R_3+R_2}{\\rightarrow}\n\\begin{bmatrix} \n5&2&1&|&-8\n\\\\\n1&-2&-3&|&0\n\\\\\n0&-1&-1&|&3\n\\end{bmatrix}"
"\\qquad \\qquad \\qquad \\qquad \\qquad \\quad\\overset{R_1-5R_2}{\\rightarrow}\n\n\\begin{bmatrix} \n0&12&16&|&-8\n\\\\\n1&-2&-3&|&0\n\\\\\n0&-1&-1&|&3\n\\end{bmatrix}"
"\\qquad \\qquad \\qquad \\qquad \\qquad \\quad\\overset{R_1+12R_3}{\\rightarrow}\n\n\\begin{bmatrix} \n0&0&4&|&28\n\\\\\n1&-2&-3&|&0\n\\\\\n0&-1&-1&|&3\n\\end{bmatrix}"
"\\qquad \\qquad \\qquad \\qquad \\qquad \\quad\\overset{R_2-2R_3}{\\rightarrow}\n\n\\begin{bmatrix} \n0&0&4&|&28\n\\\\\n1&0&-1&|&-6\n\\\\\n0&-1&-1&|&3\n\\end{bmatrix}"
"\\qquad \\qquad \\qquad \\qquad \\qquad \\quad\\overset{R_1\/4}{\\rightarrow}\n\n\\begin{bmatrix} \n0&0&1&|&7\n\\\\\n1&0&-1&|&-6\n\\\\\n0&-1&-1&|&3\n\\end{bmatrix}"
"\\qquad \\qquad \\qquad \\qquad \\qquad \\quad\\overset{R_2+R_1}{\\rightarrow}\n\n\\begin{bmatrix} \n0&0&1&|&7\n\\\\\n1&0&0&|&1\n\\\\\n0&-1&-1&|&3\n\\end{bmatrix}"
"\\qquad \\qquad \\qquad \\qquad \\qquad \\quad\\overset{R_3+R_1}{\\rightarrow}\n\n\\begin{bmatrix} \n0&0&1&|&7\n\\\\\n1&0&0&|&1\n\\\\\n0&-1&0&|&10\n\\end{bmatrix}"
"\\qquad \\qquad \\qquad \\qquad \\qquad \\quad\\overset{-R_3}{\\rightarrow}\n\n\\begin{bmatrix} \n0&0&1&|&7\n\\\\\n1&0&0&|&1\n\\\\\n0&1&0&|&-10\n\\end{bmatrix}"
Answer: "x=1,\\ \\ y=-10,\\ \\ z=7."
Comments
Leave a comment