a)
A=⎣⎡211121223⎦⎤
A−λI=⎣⎡2−λ1112−λ1223−λ⎦⎤ The characteristic equation
∣∣2−λ1112−λ1223−λ∣∣=0
(2−λ)∣∣2−λ123−λ∣∣−(1)∣∣1123−λ∣∣
+(2)∣∣112−λ1∣∣
=(2−λ)((2−λ)(3−λ)−2)−(3−λ−2)
+2(1−(2−λ))
=(2−λ)(4−5λ+λ2)−1+λ+2λ−2
=8−10λ+2λ2−4λ+5λ2−λ3+3λ−3
=−λ3+7λ2−11λ+5=0
−λ2(λ−1)+6λ(λ−1)−5(λ−1)=0
−(λ−1)(λ2−6λ+5)=0
Matrix A. The characteristic equation is
−(λ−1)(λ−1)(λ−5)=0
B=⎣⎡3000122a2a⎦⎤
B−λI=⎣⎡3−λ0001−λ22a2a−λ⎦⎤ The characteristic equation
∣∣3−λ0001−λ22a2a−λ∣∣=0
(3−λ)∣∣1−λ2a2a−λ∣∣−(0)∣∣0222a−λ∣∣
+(0)∣∣01−λ2a∣∣
=(3−λ)((1−λ)(2a−λ)−2a)
+2(1−(2−λ))
=(3−λ)(2a−λ−2aλ+λ2−2a)
=(3−λ)λ(λ−(1+2a))=0 Matrix B. The characteristic equation is
(3−λ)λ(λ−(1+2a))=0
2.
Matrix A. The characteristic equation is
−(λ−1)(λ−1)(λ−5)=0 The eigen values are λ1=5,λ2=1,λ3=1.
λ1=5
⎣⎡2−λ1112−λ1223−λ⎦⎤=⎣⎡−3111−3122−2⎦⎤ R1=R1/(−3)
⎣⎡111−1/3−31−2/32−2⎦⎤ R2=R2−R1
⎣⎡101−1/3−8/31−2/38/3−2⎦⎤ R3=R3−R1
⎣⎡100−1/3−8/34/3−2/38/3−4/3⎦⎤ R2=−3R2/8
⎣⎡100−1/314/3−2/3−1−4/3⎦⎤ R1=R1+R2/3
⎣⎡100014/3−1−1−4/3⎦⎤ R3=R3−4R2/3
⎣⎡100010−1−10⎦⎤ Solve the matrix equation
⎣⎡100010−1−10⎦⎤⎣⎡x1x2x3⎦⎤=⎣⎡000⎦⎤ If we take x3=t, then x1=t,x2=t,x3=t.
The eigen vector is ⎣⎡111⎦⎤.
λ2=1
⎣⎡2−λ1112−λ1223−λ⎦⎤=⎣⎡111111222⎦⎤ R2=R2−R1
⎣⎡101101202⎦⎤R3=R3−R1
⎣⎡100100200⎦⎤ Solve the matrix equation
⎣⎡100100200⎦⎤⎣⎡x1x2x3⎦⎤=⎣⎡000⎦⎤ If we take x2=t,x3=s, then x1=−t−2s,x2=t,x3=s.
The eigen vectors are ⎣⎡−110⎦⎤,⎣⎡−201⎦⎤
Matrix B. The characteristic equation is
(3−λ)λ(λ−(1+2a))=0 The eigen values are λ1=3,λ2=1+2a,λ3=0.
λ1=3
⎣⎡3−λ0001−λ22a2a−λ⎦⎤=⎣⎡0000−222a2a−3⎦⎤
Swap the rows 1and 2
⎣⎡000−202a22a−3⎦⎤
R1=R1/(−2)
⎣⎡000102−a/222a−3⎦⎤ R3=R3−2R1
⎣⎡000100−a/223a−3⎦⎤ R2=R2/2
⎣⎡000100−a/213a−3⎦⎤ R1=R1+aR2/2
⎣⎡000100013a−3⎦⎤ R3=R3−3(a−1)R2
⎣⎡000100010⎦⎤ Solve the matrix equation
⎣⎡000100010⎦⎤⎣⎡x1x2x3⎦⎤=⎣⎡000⎦⎤ If we take x1=t, then x1=t,x2=0,x3=0.
The eigen vector is ⎣⎡100⎦⎤.
λ2=2a+1
⎣⎡3−λ0001−λ22a2a−λ⎦⎤=⎣⎡2−2a000−2a22a−1⎦⎤R1=R1/(2−2a),a=1
⎣⎡1000−2a21/(1−a)a−1⎦⎤ R2=R2/(−2a)
⎣⎡1000121/(1−a)−1/2−1⎦⎤ R3=R3−2R2
⎣⎡1000101/(1−a)−1/20⎦⎤Solve the matrix equation
⎣⎡1000101/(1−a)−1/20⎦⎤=⎣⎡000⎦⎤ If we take x3=t, then x1=1/(a−1),x2=1/2,x3=1.
The eigen vector is ⎣⎡1/(a−1)1/21⎦⎤.
λ3=0
⎣⎡3−λ0001−λ22a2a−λ⎦⎤=⎣⎡3000122a2a⎦⎤R1=R1/3
⎣⎡1000122/3a2a⎦⎤R3=R3−2R2
⎣⎡1000102/3a0⎦⎤ Solve the matrix equation
⎣⎡1000102/3a0⎦⎤=⎣⎡000⎦⎤ If we take x3=t, then x1=−2/3,x2=−a,x3=1.
The eigen vector is ⎣⎡−2/3−a1⎦⎤.
Comments