Known Matrix:
Note: In matrix B, let the value of a be so that the eigenvalues and the basis of the eigenspace are dependent on a.
a)
"A-\\lambda I=\\begin{bmatrix}\n 2 -\\lambda & 1 & 2 \\\\\n 1 & 2-\\lambda & 2 \\\\\n1 & 1 & 3-\\lambda\n\\end{bmatrix}"
The characteristic equation
"(2 -\\lambda)\\begin{vmatrix}\n 2 -\\lambda & 2 \\\\\n 1 & 3 -\\lambda\n\\end{vmatrix}-(1)\\begin{vmatrix}\n 1 & 2 \\\\\n 1 & 3 -\\lambda\n\\end{vmatrix}"
"+(2)\\begin{vmatrix}\n 1 & 2-\\lambda \\\\\n 1 & 1\n\\end{vmatrix}"
"=(2-\\lambda)((2-\\lambda)(3-\\lambda)-2)-(3-\\lambda-2)"
"+2(1-(2-\\lambda))"
"=(2-\\lambda)(4-5\\lambda+\\lambda^2)-1+\\lambda+2\\lambda-2"
"=8-10\\lambda+2\\lambda^2-4\\lambda+5\\lambda^2-\\lambda^3+3\\lambda-3"
"=-\\lambda^3+7\\lambda^2-11\\lambda+5=0"
"-\\lambda^2(\\lambda-1)+6\\lambda(\\lambda-1)-5(\\lambda-1)=0"
"-(\\lambda-1)(\\lambda^2-6\\lambda+5)=0"
Matrix "A." The characteristic equation is
"B-\\lambda I=\\begin{bmatrix}\n 3 -\\lambda & 0 & 2 \\\\\n 0 & 1-\\lambda & a \\\\\n0 & 2 & 2a-\\lambda\n\\end{bmatrix}"
The characteristic equation
"(3 -\\lambda)\\begin{vmatrix}\n 1 -\\lambda & a \\\\\n 2 & 2a -\\lambda\n\\end{vmatrix}-(0)\\begin{vmatrix}\n 0 & 2 \\\\\n 2 & 2a -\\lambda\n\\end{vmatrix}"
"+(0)\\begin{vmatrix}\n 0 & 2 \\\\\n 1-\\lambda & a\n\\end{vmatrix}"
"=(3-\\lambda)((1-\\lambda)(2a-\\lambda)-2a)"
"+2(1-(2-\\lambda))"
"=(3-\\lambda)(2a-\\lambda-2a\\lambda+\\lambda^2-2a)"
"=(3-\\lambda)\\lambda(\\lambda-(1+2a))=0"
Matrix "B." The characteristic equation is
2.
Matrix "A." The characteristic equation is
The eigen values are "\\lambda_1=5, \\lambda_2=1, \\lambda_3=1."
"\\lambda_1=5"
"\\begin{bmatrix}\n 2 -\\lambda & 1 & 2 \\\\\n 1 & 2-\\lambda & 2 \\\\\n1 & 1 & 3-\\lambda\n\\end{bmatrix}=\\begin{bmatrix}\n -3 & 1 & 2 \\\\\n 1 & -3 & 2 \\\\\n1 & 1 & -2\n\\end{bmatrix}"
"R_1=R_1\/(-3)"
"R_2=R_2-R_1"
"R_3=R_3-R_1"
"R_2=-3R_2\/8"
"\\begin{bmatrix}\n 1 & -1\/3 & -2\/3 \\\\\n 0 & 1 & -1 \\\\\n0 & 4\/3 & -4\/3\n\\end{bmatrix}"
"R_1=R_1+R_2\/3"
"R_3=R_3-4R_2\/3"
Solve the matrix equation
If we take "x_3=t," then "x_1=t, x_2=t, x_3=t."
The eigen vector is "\\begin{bmatrix}\n 1 \\\\\n1\\\\\n1\n\\end{bmatrix}."
"\\lambda_2=1"
"\\begin{bmatrix}\n 2 -\\lambda & 1 & 2 \\\\\n 1 & 2-\\lambda & 2 \\\\\n1 & 1 & 3-\\lambda\n\\end{bmatrix}=\\begin{bmatrix}\n 1 & 1 & 2 \\\\\n 1 & 1 & 2 \\\\\n1 & 1 & 2\n\\end{bmatrix}"
"R_2=R_2-R_1"
"R_3=R_3-R_1"
Solve the matrix equation
If we take "x_2=t,x_3=s," then "x_1=-t-2s, x_2=t, x_3=s."
The eigen vectors are "\\begin{bmatrix}\n -1 \\\\\n1\\\\\n0\n\\end{bmatrix}, \\begin{bmatrix}\n -2 \\\\\n0\\\\\n1\n\\end{bmatrix}"
Matrix "B." The characteristic equation is
The eigen values are "\\lambda_1=3, \\lambda_2=1+2a, \\lambda_3=0."
"\\lambda_1=3"
Swap the rows 1and 2
"R_1=R_1\/(-2)"
"R_3=R_3-2R_1"
"R_2=R_2\/2"
"R_1=R_1+aR_2\/2"
"R_3=R_3-3(a-1)R_2"
Solve the matrix equation
If we take "x_1=t," then "x_1=t, x_2=0, x_3=0."
The eigen vector is "\\begin{bmatrix}\n 1 \\\\\n0\\\\\n0\n\\end{bmatrix}."
"\\lambda_2=2a+1"
"\\begin{bmatrix}\n 3 -\\lambda & 0 & 2 \\\\\n 0 & 1-\\lambda & a \\\\\n0 & 2 & 2a-\\lambda\n\\end{bmatrix}=\\begin{bmatrix}\n 2-2a & 0 & 2 \\\\\n 0 & -2a & a \\\\\n0 & 2 & -1\n\\end{bmatrix}""R_1=R_1\/(2-2a), a\\not=1"
"\\begin{bmatrix}\n 1 & 0 & 1\/(1-a) \\\\\n 0 & -2a & a \\\\\n0 & 2 & -1\n\\end{bmatrix}""R_2=R_2\/(-2a)"
"\\begin{bmatrix}\n 1 & 0 & 1\/(1-a) \\\\\n 0 & 1 & -1\/2 \\\\\n0 & 2 & -1\n\\end{bmatrix}""R_3=R_3-2R_2"
"\\begin{bmatrix}\n 1 & 0 & 1\/(1-a) \\\\\n 0 & 1 & -1\/2 \\\\\n0 & 0 & 0\n\\end{bmatrix}"Solve the matrix equation
If we take "x_3=t," then "x_1=1\/(a-1), x_2=1\/2, x_3=1."
The eigen vector is "\\begin{bmatrix}\n 1 \/(a-1)\\\\\n1\/2\\\\\n1\n\\end{bmatrix}."
"\\lambda_3=0"
"\\begin{bmatrix}\n 3 -\\lambda & 0 & 2 \\\\\n 0 & 1-\\lambda & a \\\\\n0 & 2 & 2a-\\lambda\n\\end{bmatrix}=\\begin{bmatrix}\n 3 & 0 & 2 \\\\\n 0 & 1 & a \\\\\n0 & 2 & 2a\n\\end{bmatrix}""R_1=R_1\/3"
"\\begin{bmatrix}\n 1 & 0 & 2\/3 \\\\\n 0 & 1 & a \\\\\n0 & 2 & 2a\n\\end{bmatrix}""R_3=R_3-2R_2"
Solve the matrix equation
If we take "x_3=t," then "x_1=-2\/3, x_2=-a, x_3=1."
The eigen vector is "\\begin{bmatrix}\n -2\/3\\\\\n-a\\\\\n1\n\\end{bmatrix}."
Comments
Leave a comment