Question #271357

It is known that the vectors in the vector space R3:

⃗v1 = (1, 1, 1), v2 = (2, -1, 1), v3 = (0, 2, 1)

and

⃗w1 = (2, -1, 3), w2 = (3, -1, 7), w3 = (-1, 1, 1)

The vectors v1, v2, v3 are basis in R3. Transformation T : R3 → R3 is a linear transformation defined by:

 T( ⃗vi) = ⃗wi

Define:

1. Matrix transformation of T

2. Basis of Ker(T) and Range(T)



1
Expert's answer
2021-11-26T11:47:38-0500

1.


e1=[100]=a[111]+b[211]+c[021]\vec e_1=\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}=a\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}+b\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}+c\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}

a+2b=1ab+2c=0a+b+c=0=>a=3b=1c=2\begin{matrix} a+2b=1 \\ a-b+2c=0 \\ a+b+c=0 \end{matrix}=>\begin{matrix} a=3 \\ b=-1 \\ c=-2 \end{matrix}

e1=3v1v22v3\vec e_1=3\vec v_1-\vec v_2-2\vec v_3


T([100])=3[213][317]2[111]T\begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{pmatrix}= 3\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}-\begin{bmatrix} 3 \\ -1 \\ 7 \end{bmatrix}-2\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}

=[540]=\begin{bmatrix} 5 \\ -4 \\ 0 \end{bmatrix}


e2=[010]=d[111]+f[211]+g[021]\vec e_2=\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}=d\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}+f\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}+g\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}

d+2f=0df+2g=1d+f+g=0=>d=2f=1g=1\begin{matrix} d+2f=0 \\ d-f+2g=1 \\ d+f+g=0 \end{matrix}=>\begin{matrix} d=2 \\ f=-1 \\ g=-1 \end{matrix}

e2=2v1v2v3\vec e_2=2\vec v_1-\vec v_2-\vec v_3


T([010])=2[213][317][111]T\begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \end{pmatrix} = 2\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}-\begin{bmatrix} 3 \\ -1 \\ 7 \end{bmatrix}-\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}

=[222]=\begin{bmatrix} 2 \\ -2 \\ -2 \end{bmatrix}



e3=[001]=k[111]+m[211]+n[021]\vec e_3=\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}=k\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}+m\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}+n\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}

k+2m=0km+2n=0k+m+n=1=>k=4m=2n=3\begin{matrix} k+2m=0 \\ k-m+2n=0 \\ k+m+n=1 \end{matrix}=>\begin{matrix} k=-4 \\ m=2 \\ n=3 \end{matrix}

e3=4v1+2v2+3v3\vec e_3=-4\vec v_1+2\vec v_2+3\vec v_3T([001])=4[213]+2[317]+3[111]T\begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix} =-4\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}+2\begin{bmatrix} 3 \\ -1 \\ 7 \end{bmatrix}+3\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}

=[555]=\begin{bmatrix} -5\\ 5 \\ 5 \end{bmatrix}




T(x)=AxT(\vec x)=A\vec x

A=[525425025]A=\begin{bmatrix} 5 & 2 & -5 \\ -4 & -2 & 5 \\ 0 & -2 & 5 \end{bmatrix}

2.


A=[525425025]A=\begin{bmatrix} 5 & 2 & -5 \\ -4 & -2 & 5 \\ 0 & -2 & 5 \end{bmatrix}

R1=R1/5R_1=R_1/5

[12/51425025]\begin{bmatrix} 1 & 2/5 & -1 \\ -4 & -2 & 5 \\ 0 & -2 & 5 \end{bmatrix}

R2=R2+4R1R_2=R_2+4R_1


[12/5102/51025]\begin{bmatrix} 1 & 2/5 & -1 \\ 0 & -2/5 & 1 \\ 0 & -2 & 5 \end{bmatrix}

R2=(5R2)/2R_2=-(5R_2)/2


[12/51015/2025]\begin{bmatrix} 1 & 2/5 & -1 \\ 0 & 1 & -5/2 \\ 0 & -2 & 5 \end{bmatrix}

R1=R1(2R2)/5R_1=R_1-(2R_2)/5


[100015/2025]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -5/2 \\ 0 & -2 & 5 \end{bmatrix}

R3=R3+2R2R_3=R_3+2R_2


[100015/2000]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -5/2 \\ 0 & 0 & 0 \end{bmatrix}

[100015/2000][x1x2x3]=[000]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -5/2 \\ 0 & 0 & 0 \end{bmatrix}\begin{bmatrix} x_1\\ x_2 \\ x_3 \end{bmatrix}=\begin{bmatrix} 0\\ 0 \\ 0 \end{bmatrix}

If we take x3=t,x_3=t, then x1=0,x2=(5/2)tx_1=0, x_2=(5/2)t

Therefore the kernel of TT has a basis formed by the set


[05/21]\begin{bmatrix} 0\\ 5/2 \\ 1 \end{bmatrix}

u3=0u1+(5/2)u2\vec u_3=0\vec u_1+(-5/2)\vec u_2

The set {[540],[222]}\bigg\{\begin{bmatrix} 5\\ -4 \\ 0 \end{bmatrix}, \begin{bmatrix} 2\\ -2\\ -2 \end{bmatrix}\bigg\} forms a basis for the range of T.T.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS