Question #272434

Find 2×2 matrix A that maps (1,3)^T and (1,4)^T into (-2,5)^T and (3,-1)^T, respectively

1
Expert's answer
2021-11-30T14:04:08-0500

Solution;

A linear transformation TA:R2R2T_A:R^2\to R^2 Is defined by;

TA(v)=A(v)T_A(v)=A(v)

Since A is the desired matrix of transformation,we have;

A[13]=[25]A\begin{bmatrix} 1\\ 3 \end{bmatrix}=\begin{bmatrix} -2 \\ 5 \end{bmatrix} and A[14]=[31]A\begin{bmatrix} 1 \\ 4 \end{bmatrix}=\begin{bmatrix} 3 \\ -1 \end{bmatrix}

If we put both maps into one matrix ,we have;

A[1134]=[2351]A\begin{bmatrix} 1 & 1\\ 3 & 4 \end{bmatrix}=\begin{bmatrix} -2 & 3 \\ 5 & -1 \end{bmatrix}

Hence we can find A as;

A=[2351][1134]1A=\begin{bmatrix} -2 & 3 \\ 5 & -1 \end{bmatrix}\begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}^{-1}


A=[2351][4131]A=\begin{bmatrix} -2 & 3\\ 5& -1 \end{bmatrix}\begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix}


A=[175236]A=\begin{bmatrix} -17& 5\\ 23 & -6 \end{bmatrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS