Question #278754

Let.

1             0             0

0             3             6

0             -1           -2


Verify that C 2 = C holds. Find the eigenvalues and eigenvectors of C. 


1
Expert's answer
2021-12-16T09:52:57-0500

C2=(100036012)(100036012)=(10001022022)C^2=\begin{pmatrix} 1 & 0&0 \\ 0 & 3&6\\ 0&-1&-2 \end{pmatrix}\begin{pmatrix} 1 & 0&0 \\ 0 & 3&6\\ 0&-1&-2 \end{pmatrix}=\begin{pmatrix} 1 & 0&0 \\ 0 & 10&22\\ 0&-2&-2 \end{pmatrix}


1λ0003λ6012λ=0\begin{vmatrix} 1-\lambda & 0&0 \\ 0&3- \lambda& 6\\ 0&-1&-2-\lambda \end{vmatrix}=0


(1λ)((3λ)(2λ)+6)=0(1-\lambda)((3-\lambda)(-2-\lambda)+6)=0

λ1=1\lambda_1=1

λ2λ=0\lambda^2-\lambda=0

λ2=0,λ3=1\lambda_2=0,\lambda_3=1


for λ=1\lambda=1 :

2y+6z=02y+6z=0

y3z=0-y-3z=0

y=3zy=-3z


u1=(113),u2=(113)u_1=\begin{pmatrix} 1 \\ -1\\ 3 \end{pmatrix},u_2=\begin{pmatrix} 1 \\ 1\\ -3 \end{pmatrix}


for λ=0\lambda=0 :

x=0x=0

3y+6z=03y+6z=0

y2z=0-y-2z=0

y=2zy=-2z


u3=(012)u_3=\begin{pmatrix} 0 \\ -1\\ 2 \end{pmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS