Let. (Matrix)
2 0 1
2 -2 2
0 4 1
(a) Find A2 and A3 , and verify that: A 3 − A 2 − 12A = −12i
holds, where I stands for the identity matrix.
(b) Find A−1 by multiplying the equation above on both sides by A−1
(a) Let A = "\\begin{bmatrix}\n 2 & 0 &1\\\\\n 2 & -2&2\\\\\n0&4&1\n\\end{bmatrix}"
So A²
= "\\begin{bmatrix}\n 2 & 0 &1\\\\\n 2 & -2&2\\\\\n0&4&1\n\\end{bmatrix}\\begin{bmatrix}\n 2 & 0 &1\\\\\n 2 & -2&2\\\\\n0&4&1\n\\end{bmatrix}"
= "\\begin{bmatrix}\n 4+0+0 & 0+0+4 &2+0+1\\\\\n 4-4+0 & 0+4+8&2-4+2\\\\\n0+8+0&0-8+4&0+8+1\n\\end{bmatrix}" = "\\begin{bmatrix}\n 4 & 4 &3\\\\\n 0 & 12&0\\\\\n8&-4&9\n\\end{bmatrix}"
A³ = A²A
="\\begin{bmatrix}\n 4 & 4 &3\\\\\n 0 & 12&0\\\\\n8&-4&9\n\\end{bmatrix}" "\\begin{bmatrix}\n 2 & 0 &1\\\\\n 2 & -2&2\\\\\n0&4&1\n\\end{bmatrix}"
= "\\begin{bmatrix}\n 8+8+0 & 0 -8+12&4+8+3\\\\\n 0+24+0 & 0-24+0&0+24+0\\\\\n16-8+0&0+8+36&8-8+9\n\\end{bmatrix}"
= "\\begin{bmatrix}\n 16& 4&15\\\\\n 2 4& -24&24\\\\\n8&44&9\n\\end{bmatrix}"
Now A³ - A² =
"\\begin{bmatrix}\n 16& 4&15\\\\\n 2 4& -24&24\\\\\n8&44&9\n\\end{bmatrix}" "-\\begin{bmatrix}\n 4 & 4 &3\\\\\n 0 & 12&0\\\\\n8&-4&9\n\\end{bmatrix}"
= "\\begin{bmatrix}\n 12 & 0 &12\\\\\n 24 & -36&24\\\\\n0&48&0\n\\end{bmatrix}"
12A =
"12\\begin{bmatrix}\n 2 & 0 &1\\\\\n 2 & -2&2\\\\\n0&4&1\n\\end{bmatrix}" ="\\begin{bmatrix}\n 2 4& 0 &12\\\\\n 24 & -24&24\\\\\n0&48&12\n\\end{bmatrix}"
A³ - A² - 12A =
"\\begin{bmatrix}\n 12 & 0 &12\\\\\n 24 & -36&24\\\\\n0&48&0\n\\end{bmatrix}" "-\\begin{bmatrix}\n 2 4& 0 &12\\\\\n 24 & -24&24\\\\\n0&48&12\n\\end{bmatrix}"
= "\\begin{bmatrix}\n -12& 0 &0\\\\\n 0 & -12&0\\\\\n0&0&-12\n\\end{bmatrix}"
= "-12\\begin{bmatrix}\n 1& 0 &0\\\\\n 0 & 1&0\\\\\n0&0&1\n\\end{bmatrix}= -12I"
Relation is verified.
b)
A³ - A² - 12A =-12I
Multiplying both sides by A-1
A³A-1- A²A-1-12AA-1=-12IA-1
=> A²I - AI - 12I = -12A-1
=> A² - A - 12I = -12A-1
=> -12A-1 = "\\begin{bmatrix}\n 4 & 4 &3\\\\\n 0 & 12&0\\\\\n8&-4&9\n\\end{bmatrix}" - "\\begin{bmatrix}\n 2 & 0 &1\\\\\n 2 & -2&2\\\\\n0&4&1\n\\end{bmatrix}" -"\\begin{bmatrix}\n 12 & 0 &0\\\\\n 0 & 12&0\\\\\n0&0&12\n\\end{bmatrix}"
= "\\begin{bmatrix}\n 4-2-12 & 4-0-0 &3-1-0\\\\\n 0-2-0 & 12+2-12&0-2-0\\\\\n8-0-0&-4-4-0&9-1-12\n\\end{bmatrix}" ="\\begin{bmatrix}\n -10 & 4 &2\\\\\n -2 & 2&-2\\\\\n8&-8&-4\n\\end{bmatrix}"
A-1 = "\\frac{1}{6}\\begin{bmatrix}\n 5 & -2 &-1\\\\\n 1 & -1&1\\\\\n-4&4&2\n\\end{bmatrix}"
Comments
Leave a comment