∣ 218 0 0 0 218 2 0 1 1 ∣ = 218 ⋅ 218 ⋅ 1 + 0 ⋅ 0 ⋅ 0 + + 0 ⋅ 2 ⋅ 0 − 0 ⋅ 218 ⋅ 0 − 0 ⋅ 0 ⋅ 1 − − 1 ⋅ 2 ⋅ 218 = 47524 − 436 = 47088 ≠ 0 \begin{vmatrix}
218 & 0&0 \\
0 & 218&2\\
0&1&1
\end{vmatrix}=218\cdot 218\cdot1+0\cdot0\cdot0+\\+0\cdot2\cdot0
-0\cdot218\cdot0-0\cdot0\cdot1-\\
-1\cdot2\cdot218=47524-436=47088\neq0 ∣ ∣ 218 0 0 0 218 1 0 2 1 ∣ ∣ = 218 ⋅ 218 ⋅ 1 + 0 ⋅ 0 ⋅ 0 + + 0 ⋅ 2 ⋅ 0 − 0 ⋅ 218 ⋅ 0 − 0 ⋅ 0 ⋅ 1 − − 1 ⋅ 2 ⋅ 218 = 47524 − 436 = 47088 = 0
A − 1 ( 218 0 0 ∣ 1 0 0 0 218 2 ∣ 0 1 0 0 1 1 ∣ 0 0 1 ) ∼ 1 r ⋅ 1 218 2 r ↔ 3 r A^{-1}\\
\begin{pmatrix}
218 &0&0 &|&1&0&0\\
0 & 218&2&|&0&1&0\\
0&1&1&|&0&0&1
\end{pmatrix}\sim\\
1r\cdot \frac{1}{218}\\
2r\leftrightarrow3r A − 1 ⎝ ⎛ 218 0 0 0 218 1 0 2 1 ∣ ∣ ∣ 1 0 0 0 1 0 0 0 1 ⎠ ⎞ ∼ 1 r ⋅ 218 1 2 r ↔ 3 r
∼ ( 1 0 0 ∣ 1 218 0 0 0 1 1 ∣ 0 0 1 0 218 2 ∣ 0 1 0 ) ∼ 3 r + 2 r ⋅ ( − 218 ) \sim\begin{pmatrix}
1 &0&0 &|&\frac{1}{218}&0&0\\
0&1&1&|&0&0&1\\
0 & 218&2&|&0&1&0
\end{pmatrix}\sim\\
3r+2r\cdot(-218) ∼ ⎝ ⎛ 1 0 0 0 1 218 0 1 2 ∣ ∣ ∣ 218 1 0 0 0 0 1 0 1 0 ⎠ ⎞ ∼ 3 r + 2 r ⋅ ( − 218 )
∼ ( 1 0 0 ∣ 1 218 0 0 0 1 1 ∣ 0 0 1 0 0 − 216 ∣ 0 1 − 218 ) ∼ 3 r ⋅ − 1 216 \sim\begin{pmatrix}
1 &0&0 &|&\frac{1}{218}&0&0\\
0&1&1&|&0&0&1\\
0 & 0&-216&|&0&1&-218
\end{pmatrix}\sim\\
3r\cdot\frac{-1}{216} ∼ ⎝ ⎛ 1 0 0 0 1 0 0 1 − 216 ∣ ∣ ∣ 218 1 0 0 0 0 1 0 1 − 218 ⎠ ⎞ ∼ 3 r ⋅ 216 − 1
∼ ( 1 0 0 ∣ 1 218 0 0 0 1 1 ∣ 0 0 1 0 0 1 ∣ 0 − 1 216 109 108 ) ∼ 2 r + 3 r ⋅ ( − 1 ) \sim\begin{pmatrix}
1 &0&0 &|&\frac{1}{218}&0&0\\
0&1&1&|&0&0&1\\
0 & 0&1&|&0&\frac{-1}{216}&\frac{109}{108}
\end{pmatrix}\sim\\
2r+3r\cdot(-1) ∼ ⎝ ⎛ 1 0 0 0 1 0 0 1 1 ∣ ∣ ∣ 218 1 0 0 0 0 216 − 1 0 1 108 109 ⎠ ⎞ ∼ 2 r + 3 r ⋅ ( − 1 )
∼ ( 1 0 0 ∣ 1 218 0 0 0 1 0 ∣ 0 1 216 − 1 108 0 0 1 ∣ 0 − 1 216 109 108 ) \sim\begin{pmatrix}
1 &0&0 &|&\frac{1}{218}&0&0\\
0&1&0&|&0&\frac{1}{216}&\frac{-1}{108}\\
0 & 0&1&|&0&\frac{-1}{216}&\frac{109}{108}
\end{pmatrix} ∼ ⎝ ⎛ 1 0 0 0 1 0 0 0 1 ∣ ∣ ∣ 218 1 0 0 0 216 1 216 − 1 0 108 − 1 108 109 ⎠ ⎞
A − 1 = ( 1 218 0 0 0 1 216 − 1 108 0 − 1 216 109 108 ) A^{-1}=\begin{pmatrix}
\frac{1}{218}&0&0\\\\
0&\frac{1}{216}&\frac{-1}{108}\\\\
0&\frac{-1}{216}&\frac{109}{108}
\end{pmatrix} A − 1 = ⎝ ⎛ 218 1 0 0 0 216 1 216 − 1 0 108 − 1 108 109 ⎠ ⎞
Comments