Question #268316

(1) The table below shows the calories, fat, and carbohydrates per ounce for three brands of cereal.

Calories Fat Carbohydrates

Cereal Brand A 10 0 11

Cereal Brand B 100 0.2 22.5

Cereal Brand C 130 5.6 19

Total Required 400 6.2 92


(i) Using the information in the table above, write a system of three equations.

(ii) Write a system in matrix form Ax = b.

(iii) Using the Cramer's Rule or Inverse Method, find the amount of each brand of cereal that will give the level of nutrition required. 


1
Expert's answer
2021-11-21T13:32:55-0500

(i)

10x+100y+130z=4000x+0.2y+5.6z=6.211x+22.5y+19z=92\def\arraystretch{1.5} \begin{array}{c} 10x+100y+130z=400 \\ 0x+0.2y+5.6z=6.2 \\ 11x+22.5y+19z=92 \end{array}

(ii)


A=(1010013000.25.61122.519),X=(xyz),B=(4006.292),A=\begin{pmatrix} 10& 100& 130 \\ 0& 0.2& 5.6 \\ 11 & 22.5 & 19 \end{pmatrix}, X=\begin{pmatrix} x\\ y \\ z \end{pmatrix}, B=\begin{pmatrix} 400\\ 6.2 \\ 92 \end{pmatrix},

AX=BAX=B

(1010013000.25.61122.519)(xyz)=(4006.292)\begin{pmatrix} 10& 100& 130 \\ 0& 0.2& 5.6 \\ 11 & 22.5 & 19 \end{pmatrix}\begin{pmatrix} x\\ y \\ z \end{pmatrix}=\begin{pmatrix} 400\\ 6.2 \\ 92 \end{pmatrix}

(iii)


Δ=detA=1010013000.25.61122.519\Delta=\det A=\begin{vmatrix} 10& 100& 130 \\ 0& 0.2& 5.6 \\ 11 & 22.5 & 19 \end{vmatrix}

=100.25.622.519010013022.519+111001300.25.6=10\begin{vmatrix} 0.2 & 5.6 \\ 22.5 & 19 \end{vmatrix}-0\begin{vmatrix} 100 & 130 \\ 22.5 & 19 \end{vmatrix}+11\begin{vmatrix} 100 &130 \\ 0.2 & 5.6 \end{vmatrix}

=12220+5874=46520=-1222-0+5874=4652\not=0


Δ1=4001001306.20.25.69222.519\Delta_1=\begin{vmatrix} 400& 100& 130 \\ 6.2 & 0.2& 5.6 \\ 92 & 22.5 & 19 \end{vmatrix}

=4000.25.622.5196.210013022.519+921001300.25.6=400\begin{vmatrix} 0.2 & 5.6 \\ 22.5 & 19 \end{vmatrix}-6.2\begin{vmatrix} 100 & 130 \\ 22.5 & 19 \end{vmatrix}+92\begin{vmatrix} 100 &130 \\ 0.2 & 5.6 \end{vmatrix}

=48880+6355+49128=6603=-48880+6355+49128=6603


Δ2=1040013006.25.6119219\Delta_2=\begin{vmatrix} 10& 400& 130 \\ 0& 6.2& 5.6 \\ 11 & 92 & 19 \end{vmatrix}

=106.25.6921904001309219+114001306.25.6=10\begin{vmatrix} 6.2 & 5.6 \\ 92 & 19 \end{vmatrix}-0\begin{vmatrix} 400 & 130 \\ 92 & 19 \end{vmatrix}+11\begin{vmatrix} 400 &130 \\ 6.2 & 5.6 \end{vmatrix}

=39740+15774=11800=-3974-0+15774=11800

Δ3=1010040000.26.21122.592\Delta_3=\begin{vmatrix} 10& 100& 400 \\ 0& 0.2& 6.2 \\ 11 & 22.5 & 92 \end{vmatrix}

=100.26.222.592010040022.592+111004000.26.2=10\begin{vmatrix} 0.2 & 6.2 \\ 22.5 & 92 \end{vmatrix}-0\begin{vmatrix} 100 & 400 \\ 22.5 & 92 \end{vmatrix}+11\begin{vmatrix} 100 &400 \\ 0.2 & 6.2 \end{vmatrix}

=12110+5940=4729=-1211-0+5940=4729

x=Δ1Δ=66034652=1.41939x=\dfrac{\Delta_1}{\Delta}=\dfrac{6603}{4652}=1.41939

y=Δ2Δ=118004652=2.53654y=\dfrac{\Delta_2}{\Delta}=\dfrac{11800}{4652}=2.53654

z=Δ3Δ=47294652=1.01655z=\dfrac{\Delta_3}{\Delta}=\dfrac{4729}{4652}=1.01655


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS