Answer to Question #254072 in Linear Algebra for Sabelo Xulu

Question #254072

Consider the vector space P3

5.1. Is span {1+x,x+x2,x2+x3,x3+1}=P3 Motivate your answer

5.2. Let D P3→ P2 be the differentiation operator D(a0+a1x+a2x2+a3x3)=a1+2a2x+3a3x2

(i) Find the matrix representation of D relative to the basis {1,x,x2,x3} using the coefficient ordering a0+a1x+a2x2+a3x3[a0a1a2a3]\begin{bmatrix} a0 \\ a1\\ a2 \\ a3 \end{bmatrix}

(ii) Find the kernel and range of D


1
Expert's answer
2021-10-28T22:27:01-0400

PART 5.1


Relative to basis (1,x,x²,x³)(1,x,x²,x³)

(1+x)=(1,1,0,0),(x+x²)=(0,1,1,0)(1+x)=(1,1,0,0),(x+x²)=(0,1,1,0)

(x²+x³)=(0,0,1,1),(x³+1)=(1,0,0,1)(x²+x³)=(0,0,1,1),(x³+1)=(1,0,0,1)

Matrix P=(1001110001100011)\begin{pmatrix} 1& 0&0&1\\ 1& 1&0&0\\0&1&1&0\\0&0&1&1 \end{pmatrix}


rref of P=(1001010100110000)\begin{pmatrix} 1&0&0&1\\ 0&1&0&-1\\0&0&1&1\\0&0&0&0 \end{pmatrix}


The rank of the matrix is 3, therefore it span P3


PART 5.2 (i)


D(1)=0,D(x)=1,D(x²)=2xD(1)=0,D(x)=1,D(x²)=2x


D(x³)=3x²D(x³)=3x²

Relative to the basis

0=(0,0,0,0),1=(1,0,0,0)0=(0,0,0,0), 1=(1,0,0,0)

2x=(0,2,0,0)2x=(0,2,0,0)


D=(0100002000030000)D=\begin{pmatrix} 0 & 1&0&0 \\ 0&0&2&0\\0&0&0&3\\0&0&0&0 \end{pmatrix}


Part 5.2 (ii)


rref D=(0100001000010000)D=\begin{pmatrix} 0&1&0&0\\ 0&0&1&0\\0&0&0&1\\0&0&0&0 \end{pmatrix}


Range of D is 3


[0100001000010000][x1x2x3x4]=[0000]\begin{bmatrix} 0&1&0&0\\ 0&0&1&0\\0&0&0&1\\0&0&0&0 \end{bmatrix}\begin{bmatrix} x_1\\ x_2\\x_3\\x_4 \end{bmatrix}=\begin{bmatrix} 0\\ 0\\0\\0 \end{bmatrix}


x2=0x3=0x4=0x_2=0\quad x_3=0\quad x_4=0

Taking x1=twheretRx_1=t\>where\>t\in\R


Kernel D=[(t,0,0,0):tR]D=[{(t,0,0,0)\>:\>t\in\R}]










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment