PART 5.1
Relative to basis (1,x,x2,x3) 
(1+x)=(1,1,0,0),(x+x2)=(0,1,1,0)
(x2+x3)=(0,0,1,1),(x3+1)=(1,0,0,1)
  Matrix P=⎝⎛1100011000111001⎠⎞ 
rref of P=⎝⎛1000010000101−110⎠⎞ 
The rank of the matrix is 3, therefore it span P3 
PART 5.2 (i)
D(1)=0,D(x)=1,D(x2)=2x 
D(x3)=3x2 
Relative to the basis 
0=(0,0,0,0),1=(1,0,0,0) 
2x=(0,2,0,0) 
D=⎝⎛0000100002000030⎠⎞ 
Part 5.2 (ii)
rref D=⎝⎛0000100001000010⎠⎞ 
Range of D is 3
⎣⎡0000100001000010⎦⎤⎣⎡x1x2x3x4⎦⎤=⎣⎡0000⎦⎤ 
 
x2=0x3=0x4=0 
Taking x1=twheret∈R 
Kernel D=[(t,0,0,0):t∈R] 
Comments