Consider the vector space P3
5.1. Is span {1+x,x+x2,x2+x3,x3+1}=P3 Motivate your answer
5.2. Let D P3→ P2 be the differentiation operator D(a0+a1x+a2x2+a3x3)=a1+2a2x+3a3x2
(i) Find the matrix representation of D relative to the basis {1,x,x2,x3} using the coefficient ordering a0+a1x+a2x2+a3x3→"\\begin{bmatrix}\n a0 \\\\\n a1\\\\\n a2 \\\\\n a3\n\\end{bmatrix}"
(ii) Find the kernel and range of D
PART 5.1
Relative to basis "(1,x,x\u00b2,x\u00b3)"
"(1+x)=(1,1,0,0),(x+x\u00b2)=(0,1,1,0)"
"(x\u00b2+x\u00b3)=(0,0,1,1),(x\u00b3+1)=(1,0,0,1)"
Matrix P="\\begin{pmatrix}\n 1& 0&0&1\\\\\n 1& 1&0&0\\\\0&1&1&0\\\\0&0&1&1\n\\end{pmatrix}"
rref of P="\\begin{pmatrix}\n 1&0&0&1\\\\\n 0&1&0&-1\\\\0&0&1&1\\\\0&0&0&0\n\\end{pmatrix}"
The rank of the matrix is 3, therefore it span P3
PART 5.2 (i)
"D(1)=0,D(x)=1,D(x\u00b2)=2x"
"D(x\u00b3)=3x\u00b2"
Relative to the basis
"0=(0,0,0,0), 1=(1,0,0,0)"
"2x=(0,2,0,0)"
"D=\\begin{pmatrix}\n 0 & 1&0&0 \\\\\n 0&0&2&0\\\\0&0&0&3\\\\0&0&0&0\n\\end{pmatrix}"
Part 5.2 (ii)
rref "D=\\begin{pmatrix}\n 0&1&0&0\\\\\n 0&0&1&0\\\\0&0&0&1\\\\0&0&0&0\n\\end{pmatrix}"
Range of D is 3
"\\begin{bmatrix}\n 0&1&0&0\\\\\n 0&0&1&0\\\\0&0&0&1\\\\0&0&0&0\n\\end{bmatrix}\\begin{bmatrix}\n x_1\\\\\n x_2\\\\x_3\\\\x_4\n\\end{bmatrix}=\\begin{bmatrix}\n 0\\\\\n 0\\\\0\\\\0\n\\end{bmatrix}"
"x_2=0\\quad x_3=0\\quad x_4=0"
Taking "x_1=t\\>where\\>t\\in\\R"
Kernel "D=[{(t,0,0,0)\\>:\\>t\\in\\R}]"
Comments
Leave a comment