PART 5.1
Relative to basis (1,x,x²,x³)
(1+x)=(1,1,0,0),(x+x²)=(0,1,1,0)
(x²+x³)=(0,0,1,1),(x³+1)=(1,0,0,1)
Matrix P=⎝⎛1100011000111001⎠⎞
rref of P=⎝⎛1000010000101−110⎠⎞
The rank of the matrix is 3, therefore it span P3
PART 5.2 (i)
D(1)=0,D(x)=1,D(x²)=2x
D(x³)=3x²
Relative to the basis
0=(0,0,0,0),1=(1,0,0,0)
2x=(0,2,0,0)
D=⎝⎛0000100002000030⎠⎞
Part 5.2 (ii)
rref D=⎝⎛0000100001000010⎠⎞
Range of D is 3
⎣⎡0000100001000010⎦⎤⎣⎡x1x2x3x4⎦⎤=⎣⎡0000⎦⎤
x2=0x3=0x4=0
Taking x1=twheret∈R
Kernel D=[(t,0,0,0):t∈R]
Comments
Leave a comment