Reduce the quadratic form
2 2 2 8 7 3 12 – 8 4 x y z xy yz zx
to the canonical form
through an orthogonal transformation and hence show that it
is positive Semi-definite.
"8x^2+7y^2+3z^2-8yz+4xz+12xy"
matrix in quadratic form:
"A=\\begin{pmatrix}\n 8 & 6&2 \\\\\n 6 & 7&-4 \\\\\n2&-4&3\n\\end{pmatrix}"
"\\begin{vmatrix}\n 8 -\\lambda& 6&2 \\\\\n 6 & 7-\\lambda&-4 \\\\\n2&-4&3-\\lambda\n\\end{vmatrix}=0"
"(8-\\lambda)((7-\\lambda)(3-\\lambda)-16)-6(18-6\\lambda+8)+2(-24-14+2\\lambda)=0"
"(8-\\lambda)(21-10\\lambda+\\lambda^2-16)+36\\lambda-156+4\\lambda-76=0"
"40-80\\lambda+8\\lambda^2-5\\lambda+10\\lambda^2-\\lambda^3+40\\lambda-232=0"
"\\lambda^3-18\\lambda^2+45\\lambda+182=0"
"\\lambda_1=-2.1,\\lambda_2=6.3,\\lambda_3=13.8"
eigenvectors:
for "\\lambda_1=-2.1" :
"10.1x+6y+2z=0"
"6x+9.1y-4z=0"
"2x-4y+5.1z=0"
"26.2x+21.1y=0"
"21.1y-19.3z=0"
"y=-1.2x,z=1.1y"
"x_1=\\begin{pmatrix}\n 1 \\\\\n -1.2 \\\\\n-1.4\n\\end{pmatrix}"
for "\\lambda_2=6.3" :
"1.7x+6y+2z=0"
"6x+0.7y-4z=0"
"2x-4y-3.3z=0"
"2.6x-11.3y=0"
"12.7y+5.9z=0"
"y=0.2x,z=-2.2y"
"x_2=\\begin{pmatrix}\n 1 \\\\\n 0.2 \\\\\n-0.4\n\\end{pmatrix}"
for "\\lambda_3=13.8" :
"-5.8x+6y+2z=0"
"6x-6.8y-4z=0"
"2x-4y-10.8z=0"
"17.6x-18.8y=0"
"5.2y+28.4z=0"
"y=0.9x,z=-0.2y"
"x_3=\\begin{pmatrix}\n 1 \\\\\n 0.9 \\\\\n-0.2\n\\end{pmatrix}"
normalized matrix:
"N=\\begin{pmatrix}\n 1\/|x_1| & 1\/|x_2| &1\/|x_3|\\\\\n -1.2\/|x_1| & 0.2\/|x_2|&0.9\/|x_3|\\\\\n-1.4\/|x_1|&-0.4\/|x_2|&-0.2\/|x_3|\n\\end{pmatrix}"
"|x_1|=2.1,|x_2|=1.1,|x_3|=1.4"
"N=\\begin{pmatrix}\n 0.5 & 0.9 &0.7\\\\\n -0.6 & 0.2&0.6\\\\\n-0.7&-0.4&-0.1\n\\end{pmatrix}"
"N^T=\\begin{pmatrix}\n 0.5 & -0.6 &-0.7\\\\\n 0.9 & 0.2&-0.4\\\\\n0.7&0.6&-0.1\n\\end{pmatrix}"
"AN=\\begin{pmatrix}\n 8 & 6&2 \\\\\n 6 & 7&-4 \\\\\n2&-4&3\n\\end{pmatrix}\\begin{pmatrix}\n 0.5 & 0.9 &0.7\\\\\n -0.6 & 0.2&0.6\\\\\n-0.7&-0.4&-0.1\n\\end{pmatrix}=\\begin{pmatrix}\n -1 & 7.6&9 \\\\\n 1.6 & 7&8.8 \\\\\n-2.4&-0.2&-1.3\n\\end{pmatrix}"
"D=N^TAN=\\begin{pmatrix}\n 0.5 & -0.6 &-0.7\\\\\n 0.9 & 0.2&-0.4\\\\\n0.7&0.6&-0.1\n\\end{pmatrix}\\begin{pmatrix}\n -1 & 7.6&9 \\\\\n 1.6 & 7&8.8 \\\\\n-2.4&-0.2&-1.3\n\\end{pmatrix}="
"=\\begin{pmatrix}\n -8.4 &0 &0\\\\\n 0 & 8.3&0\\\\\n0&0&11.7\n\\end{pmatrix}"
Canonical form: "0.2x^2+8.3y^2+11.7z^2"
quadratic form Q(x) = xT · A · x is positive semidefinite if Q(x) ≥ 0
Comments
Leave a comment