Question #252478

Suppose 𝐴 and 𝑃 are 3 × 3 matrices and 𝑃-1 exists. If 𝑃-1𝐴𝑃 = ( 1 2 3

0 4 5

0 0 6 ) then find all eigen values of 𝐴2 .


1
Expert's answer
2021-10-19T16:57:01-0400

Let =A=[123045006]=A=\begin{bmatrix} 1&2& 3 \\ 0 & 4 & 5\\0 &0&6 \end{bmatrix}



A =[123045006]=\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5\\0 & 0 & 6 \end{bmatrix} =1450620506+30400=1\begin{vmatrix} 4 & 5 \\ 0 & 6 \end{vmatrix}-2\begin{vmatrix} 0&5\\ 0 & 6 \end{vmatrix}+3\begin{vmatrix} 0 & 4 \\ 0 & 0 \end{vmatrix}


=1(240)2(00)+3(00)=1(24-0)-2(0-0)+3(0-0)

A=24/=0=24\mathrlap{\,/}{=}0






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS