Suppose π΄ and π are 3 Γ 3 matrices and π-1 exists. If π-1π΄π = ( 1 2 3
0 4 5
0 0 6 ) then find all eigen values of π΄2 .
Let "=A=\\begin{bmatrix}\n 1&2& 3 \\\\\n 0 & 4 & 5\\\\0 &0&6\n\\end{bmatrix}"
A "=\\begin{bmatrix}\n 1 & 2 & 3 \\\\\n 0 & 4 & 5\\\\0 & 0 & 6\n\\end{bmatrix}" "=1\\begin{vmatrix}\n 4 & 5 \\\\\n 0 & 6\n\\end{vmatrix}-2\\begin{vmatrix}\n 0&5\\\\\n 0 & 6\n\\end{vmatrix}+3\\begin{vmatrix}\n 0 & 4 \\\\\n 0 & 0\n\\end{vmatrix}"
"=1(24-0)-2(0-0)+3(0-0)"
A"=24\\mathrlap{\\,\/}{=}0"
Comments
Leave a comment