Suppose 𝐴 and 𝑃 are 3 × 3 matrices and 𝑃-1 exists. If 𝑃-1𝐴𝑃 = ( 1 2 3
0 4 5
0 0 6 ) then find all eigen values of 𝐴2 .
Let =A=[123045006]=A=\begin{bmatrix} 1&2& 3 \\ 0 & 4 & 5\\0 &0&6 \end{bmatrix}=A=⎣⎡100240356⎦⎤
A =[123045006]=\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5\\0 & 0 & 6 \end{bmatrix}=⎣⎡100240356⎦⎤ =1∣4506∣−2∣0506∣+3∣0400∣=1\begin{vmatrix} 4 & 5 \\ 0 & 6 \end{vmatrix}-2\begin{vmatrix} 0&5\\ 0 & 6 \end{vmatrix}+3\begin{vmatrix} 0 & 4 \\ 0 & 0 \end{vmatrix}=1∣∣4056∣∣−2∣∣0056∣∣+3∣∣0040∣∣
=1(24−0)−2(0−0)+3(0−0)=1(24-0)-2(0-0)+3(0-0)=1(24−0)−2(0−0)+3(0−0)
A=24 /=0=24\mathrlap{\,/}{=}0=24/=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments