Let X be the cube root of -8.
X3=−8X^3 = -8X3=−8
X3+8=0X^3 + 8=0X3+8=0
(X+2)(X2−2X+4)=0(X+2)(X^2-2X+4)=0(X+2)(X2−2X+4)=0
For X + 2 = 0; we have X = −2
X2−2X+4=0X^2-2X+4=0X2−2X+4=0
This is need to solve this using the quadratic formula:
X=−(−2)±(−2)2−4×1×42×1X=\frac{-(-2)\pm\sqrt{(-2)^2-4\times1\times4}}{2\times1}X=2×1−(−2)±(−2)2−4×1×4
X=2±4−162X=\frac{2\pm\sqrt{4-16}}{2}X=22±4−16
X=2±−122X=\frac{2\pm\sqrt{-12}}{2}X=22±−12
X=2±2−32X=\frac{2\pm2\sqrt{-3}}{2}X=22±2−3
X=1±−3X=1\pm\sqrt{-3}X=1±−3
This means all the third root of( -8) are;
−2,1+i3,1−i3-2, 1+i\sqrt{3}, 1-i\sqrt{3}−2,1+i3,1−i3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments