A = ( 1 1 3 5 3 1 2 3 1 ) , x = ( x y z ) , b = ( 2 3 β 1 ) A=\begin{pmatrix}
1 & 1&3 \\
5&3&1\\
2&3&1
\end{pmatrix}, x=\begin{pmatrix}
x \\
y\\z
\end{pmatrix},b=\begin{pmatrix}
2 \\
3\\-1
\end{pmatrix} A = β β β 1 5 2 β 1 3 3 β 3 1 1 β β β β , x = β β β x y z β β β β , b = β β β 2 3 β 1 β β β β
1. Cramerβs Rule
Ξ = β£ 1 1 3 5 3 1 2 3 1 β£ = 3 + 2 + 45 β 18 β 5 β 3 = 24 Ξ x = β£ 2 1 3 3 3 1 β 1 3 1 β£ = 6 β 1 + 27 + 9 β 3 β 6 = 32 Ξ y = β£ 1 2 3 5 3 1 2 β 1 1 β£ = 3 + 4 β 15 β 18 β 10 + 1 = β 35 \Delta=\begin{vmatrix}
1 & 1&3 \\
5&3&1\\
2&3&1
\end{vmatrix}=3+2+45-18-5-3=24\\
\Delta_x=\begin{vmatrix}
2 & 1&3 \\
3&3&1\\
-1&3&1
\end{vmatrix}=6-1+27+9-3-6=32\\
\Delta_y=\begin{vmatrix}
1 & 2&3 \\
5&3&1\\
2&-1&1
\end{vmatrix}=3+4-15-18-10+1=-35 Ξ = β£ β£ β 1 5 2 β 1 3 3 β 3 1 1 β β£ β£ β = 3 + 2 + 45 β 18 β 5 β 3 = 24 Ξ x β = β£ β£ β 2 3 β 1 β 1 3 3 β 3 1 1 β β£ β£ β = 6 β 1 + 27 + 9 β 3 β 6 = 32 Ξ y β = β£ β£ β 1 5 2 β 2 3 β 1 β 3 1 1 β β£ β£ β = 3 + 4 β 15 β 18 β 10 + 1 = β 35
Ξ z = β£ 1 1 2 5 3 3 2 3 β 1 β£ = β 3 + 6 + 30 β 12 + 5 β 9 = 17 \Delta_z=\begin{vmatrix}
1 & 1&2 \\
5&3&3\\
2&3&-1
\end{vmatrix}=-3+6+30-12+5-9=17 Ξ z β = β£ β£ β 1 5 2 β 1 3 3 β 2 3 β 1 β β£ β£ β = β 3 + 6 + 30 β 12 + 5 β 9 = 17
x = Ξ 1 Ξ = 32 24 = 4 3 y = Ξ 2 Ξ = β 35 24 = β 35 24 z = Ξ 3 Ξ = 17 24 x=\frac{\Delta _1}{\Delta}=\frac{32}{24}=\frac{4}{3}\\
y=\frac{\Delta _2}{\Delta}=\frac{-35}{24}=-\frac{35}{24}\\
z=\frac{\Delta _3}{\Delta}=\frac{17}{24} x = Ξ Ξ 1 β β = 24 32 β = 3 4 β y = Ξ Ξ 2 β β = 24 β 35 β = β 24 35 β z = Ξ Ξ 3 β β = 24 17 β
2. Gauss elimination without pivoting
( 1 1 3 β£ 2 5 3 1 β£ 3 2 3 1 β£ β 1 ) β \begin{pmatrix}
1 & 1&3 &|&2\\
5&3&1&|&3\\
2&3&1&|&-1
\end{pmatrix}\to β β β 1 5 2 β 1 3 3 β 3 1 1 β β£ β£ β£ β 2 3 β 1 β β β β β
2r+1r(-5)
3r+1r(-2)
( 1 1 3 β£ 2 0 β 2 β 14 β£ β 7 0 1 β 5 β£ β 5 ) β \begin{pmatrix}
1 & 1&3 &|&2\\
0&-2&-14&|&-7\\
0&1&-5&|&-5
\end{pmatrix}\to β β β 1 0 0 β 1 β 2 1 β 3 β 14 β 5 β β£ β£ β£ β 2 β 7 β 5 β β β β β
2rβ \leftrightarrow β 3r
( 1 1 3 β£ 2 0 1 β 5 β£ β 5 0 0 β 24 β£ β 17 ) \begin{pmatrix}
1 & 1&3 &|&2\\
0&1&-5&|&-5\\
0&0&-24&|&-17\\
\end{pmatrix} β β β 1 0 0 β 1 1 0 β 3 β 5 β 24 β β£ β£ β£ β 2 β 5 β 17 β β β β
x + y + 3 z = 2 β 2 y β 14 z = β 7 β 24 z = β 17 β¦ z = 17 24 x+y+3z=2\\
-2y-14z=-7\\
-24z=-17\mapsto z=\frac{17}{24} x + y + 3 z = 2 β 2 y β 14 z = β 7 β 24 z = β 17 β¦ z = 24 17 β
β 2 y β 14 β
17 24 = β 7 β¦ x 2 = β 35 24 x β 35 24 + 3 β
17 24 = 2 β¦ x = 3 4 -2y-14\cdot\frac{17}{24}=-7\mapsto x_2=-\frac{35}{24}\\
x-\frac{35}{24}+3\cdot\frac{17}{24}=2\mapsto x=\frac{3}{4} β 2 y β 14 β
24 17 β = β 7 β¦ x 2 β = β 24 35 β x β 24 35 β + 3 β
24 17 β = 2 β¦ x = 4 3 β
3. Gauss-Jordan elimination
( 1 1 3 β£ 2 5 3 1 β£ 3 2 3 1 β£ β 1 ) β \begin{pmatrix}
1 & 1&3 &|&2\\
5&3&1&|&3\\
2&3&1&|&-1
\end{pmatrix}\to β β β 1 5 2 β 1 3 3 β 3 1 1 β β£ β£ β£ β 2 3 β 1 β β β β β
2r+1r(-5)
3r+1r(-2)
( 1 1 3 β£ 2 0 β 2 β 14 β£ β 7 0 1 β 5 β£ β 5 ) β \begin{pmatrix}
1 & 1&3 &|&2\\
0&-2&-14&|&-7\\
0&1&-5&|&-5
\end{pmatrix}\to β β β 1 0 0 β 1 β 2 1 β 3 β 14 β 5 β β£ β£ β£ β 2 β 7 β 5 β β β β β
2rβ \leftrightarrow β 3r
( 1 1 3 β£ 2 0 1 β 5 β£ β 5 0 β 2 β 14 β£ β 7 ) β \begin{pmatrix}
1 & 1&3 &|&2\\
0&1&-5&|&-5\\
0&-2&-14&|&-7
\end{pmatrix}\to β β β 1 0 0 β 1 1 β 2 β 3 β 5 β 14 β β£ β£ β£ β 2 β 5 β 7 β β β β β
3r+2r(2)
( 1 1 3 β£ 2 0 1 β 5 β£ β 5 0 0 β 24 β£ β 17 ) β \begin{pmatrix}
1 & 1&3 &|&2\\
0&1&-5&|&-5\\
0&0&-24&|&-17\\
\end{pmatrix}\to β β β 1 0 0 β 1 1 0 β 3 β 5 β 24 β β£ β£ β£ β 2 β 5 β 17 β β β β β
3r(β 1 24 \frac{-1}{24} 24 β 1 β )
( 1 1 3 β£ 2 0 1 β 5 β£ β 5 0 0 1 β£ 17 24 ) β \begin{pmatrix}
1 & 1&3 &|&2\\
0&1&-5&|&-5\\
0&0&1&|&\frac{17}{24}
\end{pmatrix}\to β β β 1 0 0 β 1 1 0 β 3 β 5 1 β β£ β£ β£ β 2 β 5 24 17 β β β β β β
2r+3r(5)
1r+3r(-3)
( 1 1 0 β£ β 3 24 0 1 0 β£ β 35 24 0 0 1 β£ 17 24 ) β \begin{pmatrix}
1 & 1&0 &|&-\frac{3}{24}\\
0&1&0&|&-\frac{35}{24}\\
0&0&1&|&\frac{17}{24}
\end{pmatrix}\to β β β 1 0 0 β 1 1 0 β 0 0 1 β β£ β£ β£ β β 24 3 β β 24 35 β 24 17 β β β β β β
1r+2r(-1)
( 1 0 0 β£ 32 24 0 1 0 β£ β 35 24 0 0 1 β£ 17 24 ) \begin{pmatrix}
1 & 0&0 &|&\frac{32}{24}\\
0&1&0&|&-\frac{35}{24}\\
0&0&1&|&\frac{17}{24}
\end{pmatrix} β β β 1 0 0 β 0 1 0 β 0 0 1 β β£ β£ β£ β 24 32 β β 24 35 β 24 17 β β β β β
x = 32 24 = 4 3 , y = β 35 24 , z = 17 24 x=\frac{32}{24}=\frac{4}{3}, y=-\frac{35}{24}, z=\frac{17}{24} x = 24 32 β = 3 4 β , y = β 24 35 β , z = 24 17 β
4. LU factorization
L = ( 1 0 0 5 1 0 2 β 1 2 1 ) L=\begin{pmatrix}
1 & 0&0 \\
5 & 1&0\\
2&-\frac{1}{2}&1
\end{pmatrix} L = β β β 1 5 2 β 0 1 β 2 1 β β 0 0 1 β β β β
5: 2:
( 1 1 3 0 β 2 β 14 0 1 β 5 ) \begin{pmatrix}
1 & 1&3 \\
0&-2&-14\\
0&1&-5
\end{pmatrix} β β β 1 0 0 β 1 β 2 1 β 3 β 14 β 5 β β β β
β 1 2 -\frac{1}{2} β 2 1 β :
( 1 1 3 0 β 2 β 14 0 0 β 12 ) = U \begin{pmatrix}
1 & 1&3 \\
0&-2&-14\\
0&0&-12
\end{pmatrix}=U β β β 1 0 0 β 1 β 2 0 β 3 β 14 β 12 β β β β = U
L Y = B LY=B\\ L Y = B
( 1 0 0 5 1 0 2 β 1 2 1 ) ( y 1 y 2 y 3 ) = ( 2 3 β 1 ) \begin{pmatrix}
1 & 0&0 \\
5 & 1&0\\
2&-\frac{1}{2}&1
\end{pmatrix}\begin{pmatrix}
y_1\\
y_2\\
y_3
\end{pmatrix}=\begin{pmatrix}
2\\
3\\
-1
\end{pmatrix} β β β 1 5 2 β 0 1 β 2 1 β β 0 0 1 β β β β β β β y 1 β y 2 β y 3 β β β β β = β β β 2 3 β 1 β β β β
y 1 = 2 5 y 1 + y 2 = 3 β¦ y 2 = β 7 2 y 1 β 1 2 y 2 + y 3 = β 1 β¦ y 3 = β 17 2 y_1=2\\
5y_1+y_2=3\mapsto y_2=-7\\
2y_1-\frac{1}{2}y_2+y_3=-1\mapsto y_3=-\frac{17}{2} y 1 β = 2 5 y 1 β + y 2 β = 3 β¦ y 2 β = β 7 2 y 1 β β 2 1 β y 2 β + y 3 β = β 1 β¦ y 3 β = β 2 17 β
U X = Y UX=Y\\ U X = Y
( 1 1 3 0 β 2 β 14 0 0 β 12 ) ( x y z ) = ( 2 β 7 β 17 2 ) \begin{pmatrix}
1 & 1&3 \\
0&-2&-14\\
0&0&-12
\end{pmatrix}\begin{pmatrix}
x \\
y\\z
\end{pmatrix}=\begin{pmatrix}
2 \\
-7\\-\frac{17}{2}
\end{pmatrix} β β β 1 0 0 β 1 β 2 0 β 3 β 14 β 12 β β β β β β β x y z β β β β = β β β 2 β 7 β 2 17 β β β β β
x + y + 3 z = 2 β¦ x = β 32 24 β 2 y β 14 z = β 7 β¦ y = β 35 24 β 12 z = β 17 2 β¦ z = 17 24 x+y+3z=2\mapsto x=-\frac{32}{24} \\
-2y-14z=-7\mapsto y=-\frac{35}{24}\\
-12z=-\frac{17}{2}\mapsto z=\frac{17}{24} x + y + 3 z = 2 β¦ x = β 24 32 β β 2 y β 14 z = β 7 β¦ y = β 24 35 β β 12 z = β 2 17 β β¦ z = 24 17 β
Comments