Question #249498

Which one of the following sets of vectors is linearly independent?


{(1,1,0),(1,0,1),(−5,−8,4)}

{(1,1,0),(1,0,1),(4,0,4)}

{(1,1,0),(1,0,1),(2,1,1)}

{(1,1,0),(1,0,1),(−5,−9,4)}


1
Expert's answer
2021-11-01T09:18:12-0400

Solution;

A set of vectors,v1,v2,v3 are linearly independent if the only scalars that satisfy;

k1v1+k2v2+k3v3=0.....(1)

Are;

k1=k2=k3=0.

The equivalent homogeneous solution of (1) is;

[v1v2v3]\begin{bmatrix} | & |&| \\ v_1& v_2&v_3\\ |&|&| \end{bmatrix} [k1k2k3]=0\begin{bmatrix} k_1 \\ k_2\\ k_3 \end{bmatrix}=0

For set 1;

The vector matrix is;

[115108014]\begin{bmatrix} 1 & 1&-5\\ 1 & 0&-8\\ 0&1&4 \end{bmatrix}

Reduced row echelon matrix form is;

[100010001]\begin{bmatrix} 1 & 0&0 \\ 0 & 1&0\\ 0&0&1 \end{bmatrix}

From the echelon form,it seen that;

k3=0and it follows that k2=k1=0

Hence,the set of vectors are linearly independent.

For set 2;

The vector matrix is;

[114100014]\begin{bmatrix} 1 & 1&4 \\ 1& 0&0\\ 0&1&4 \end{bmatrix}

The row reduced echelon form is;

[100014000]\begin{bmatrix} 1 & 0&0\\ 0 & 1&4\\ 0&0&0 \end{bmatrix}

This shows that there exists a nontrivial linear combination of the vectors. Hence they are linearly dependent.

Fro set 3;

The vector matrix is;

[112101011]\begin{bmatrix} 1 & 1&2\\ 1 & 0&1\\ 0&1&1 \end{bmatrix}

The reduced row echelon form is;

[101011000]\begin{bmatrix} 1 & 0&1\\ 0& 1&1\\ 0&0&0 \end{bmatrix}

Hence the vectors are linearly dependent.

For set 3;

The vector matrix is;

[115109014]\begin{bmatrix} 1 & 1&-5 \\ 1&0& -9\\ 0&1&4 \end{bmatrix}

The row reduced echelon form is;

[109014000]\begin{bmatrix} 1 & 0&-9 \\ 0& 1&4\\ 0&0&0 \end{bmatrix}

Hence the vectors are linearly dependent.

Answer;

{(1,1,0),(1,0,1),(-5,-8,4)} is linearly independent.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS