Here given
T :ℝ2 → ℝ2 , is defined as
T(x,y)=(1,y)
Now,
for T((1,0)+(0,))=T((1,1))=(1,1)
but T((1,0))+T((0,1))=(1,0)+(1,1)=(2,1)
Thus for (1,0),(0,1)∈R2,T((1,0)+(0,1)=T((1,0))+T((0,1))
and T is not a linear transformation.
By definition, a map, T:V(F)→U(F)islineartransformationifT(αu+βy)=αT(u)+βT(y)∀α,β,∈,F andu,y∈V
or
equivalently
T(u+y)=T(u)+T(y)∀u,y∈VT(αu)=αT(u)∀α∈F,u∈V
Comments