Question #248815

T :ℝ2 → ℝ2 as, 𝑇 𝑥, 𝑦 = (1, 𝑦) ;is it a linear transformation?


1
Expert's answer
2021-10-12T14:00:55-0400

Here given

T :ℝ2 → ℝ2 , is defined as

T(x,y)=(1,y)

Now,

for T((1,0)+(0,))=T((1,1))=(1,1)for \space T((1,0)+(0,))=T((1,1))=(1,1)

but T((1,0))+T((0,1))=(1,0)+(1,1)=(2,1)T((1,0))+T((0,1))=(1,0)+(1,1)=(2,1)

Thus for (1,0),(0,1)R2,T((1,0)+(0,1)T((1,0))+T((0,1))(1,0),(0,1)\in\Reals^2,\\T((1,0)+(0,1)\ne T((1,0))+T((0,1))

and T is not a linear transformation.


By definition, a map, T:V(F)U(F)islineartransformationifT(αu+βy)=αT(u)+βT(y)α,β,,F andu,yVT:V(F)\to U(F) is linear transformation if T(\alpha u+\beta y)=\alpha T(u)+\beta T(y) \forall\alpha, \beta,\in,F \space and u,y\in V

or

equivalently

T(u+y)=T(u)+T(y)u,yVT(αu)=αT(u)αF,uVT(u+y)=T(u)+T(y)\forall u,y\in V\\T(\alpha u)=\alpha T(u)\forall \alpha \in F,u\in V


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS