Question #248988

Disprove that the commutative property holds on the matrix multiplication.


1
Expert's answer
2021-10-12T10:23:44-0400

For example:

A=(3412)A=\begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}


B=(6232)B=\begin{pmatrix} 6 & 2 \\ 3 & 2 \end{pmatrix}


AB=(18+126+86+62+4)=(3014126)AB=\begin{pmatrix} 18+12 &6+8 \\ 6+6 & 2+4 \end{pmatrix}=\begin{pmatrix} 30 &14 \\ 12 & 6 \end{pmatrix}


BA=(18+224+49+212+4)=(20281116)BA=\begin{pmatrix} 18+2 &24+4 \\ 9+2 & 12+4 \end{pmatrix}=\begin{pmatrix} 20 &28 \\ 11 & 16 \end{pmatrix}


ABBAAB\neq BA


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS