Solution:
To solve it show that an arbitrary vectorsl v=(a,b,c) ∈ \in ∈ R3 is a linear combination of u 1 , u 2 u_1,u_2 u 1 , u 2 and u 3 u_3 u 3 .
Let
v = x u 1 + y u 2 + z u 3 v=xu_1+yu_2+zu_3 v = x u 1 + y u 2 + z u 3
Hence,
( a , b , c ) = x ( 1 , 1 , 1 ) + y ( 1 , 2 , 3 ) + z ( 1 , 5 , 8 ) (a,b,c)=x(1,1,1)+y(1,2,3)+z(1,5,8) ( a , b , c ) = x ( 1 , 1 , 1 ) + y ( 1 , 2 , 3 ) + z ( 1 , 5 , 8 )
Resolve as
x + y + z = a x+y+z=a x + y + z = a
x + 2 y + 5 z = b x+2y+5z=b x + 2 y + 5 z = b
x + 3 y + 8 z = c x+3y+8z=c x + 3 y + 8 z = c
Form the equivalent matrix form of the equations
[ 1 1 1 ∣ a 1 2 5 ∣ b 1 3 8 ∣ c ] \begin{bmatrix}
1&1& 1&\vert&a \\
1&2 & 5&\vert&b\\
1&3&8&\vert&c
\end{bmatrix} ⎣ ⎡ 1 1 1 1 2 3 1 5 8 ∣ ∣ ∣ a b c ⎦ ⎤
Reduced echelon form is
[ 1 1 1 ∣ a 0 1 1 ∣ b − a 0 0 − 1 ∣ a − 2 b + c ] \begin{bmatrix}
1 & 1&1&\vert&a\\
0 & 1&1&\vert&b-a\\
0&0&-1&\vert&a-2b+c
\end{bmatrix} ⎣ ⎡ 1 0 0 1 1 0 1 1 − 1 ∣ ∣ ∣ a b − a a − 2 b + c ⎦ ⎤
From the reduced echelon form,
− z = a − 2 b + c -z=a-2b+c − z = a − 2 b + c
z = − a + 2 b − c z=-a+2b-c z = − a + 2 b − c
y + 4 z = b − a y+4z=b-a y + 4 z = b − a
y = b − a − 4 z y=b-a-4z y = b − a − 4 z
By substitution,
y = b − a − 4 ( − a + 2 b − c ) y=b-a-4(-a+2b-c) y = b − a − 4 ( − a + 2 b − c )
y = 3 a − 7 b + 4 c y=3a-7b+4c y = 3 a − 7 b + 4 c
Also from the echelon form,
x + y + z = a x+y+z=a x + y + z = a
x = a − y − z x=a-y-z x = a − y − z
By substitution,
x = a − ( 3 a − 7 b + 4 c ) − ( − a + 2 b − c ) x=a-(3a-7b+4c)-(-a+2b-c) x = a − ( 3 a − 7 b + 4 c ) − ( − a + 2 b − c )
x = − a + 5 b − 3 c x=-a+5b-3c x = − a + 5 b − 3 c
Therefore,
( a , b , c ) = ( − a + 5 b − 3 c ) ( 1 , 1 , 1 ) + ( 3 a − 7 b + 4 c ) ( 1 , 2 , 3 ) + ( − a + 2 b − c ) ( 1 , 5 , 8 ) (a,b,c)=(-a+5b-3c)(1,1,1)+(3a-7b+4c)(1,2,3)+(-a+2b-c)(1,5,8) ( a , b , c ) = ( − a + 5 b − 3 c ) ( 1 , 1 , 1 ) + ( 3 a − 7 b + 4 c ) ( 1 , 2 , 3 ) + ( − a + 2 b − c ) ( 1 , 5 , 8 )
Therefore,
u 1 , u 2 , u 3 u_1,u_2,u_3 u 1 , u 2 , u 3 span R 3 R^3 R 3
Comments